- •3. Физические основы дистанционного зондирования в оптическом
- •5. Отражательная способность поверхности
- •6. Наблюдение растительного и снегового покрова
- •7. Сведения о составе атмосферы
- •8. Ослабление и рассеяние восходящего излучения в атмосфере
- •9. Оптические методы излучения
- •10. Сканер с цилиндрической и с линейной разверткой
- •11. Как устроены сканеры с цилиндрической и линейной разверткой
- •12. Что такое мгновенное поле зрения
- •13. Что такое пространственное разрешение сканера
- •14. Охарактеризуйте принцип работы радиолокатора бокового обзора
- •15. Опишите принцип синтеза апертуры
- •16. Что такое солнечно-синхронная орбита
- •17. Опишите орбиты космических аппаратов
- •18. Спутники с низким пространственным разрешением
- •19. Спутники со средним пространственным разрешением
- •20. Спутники с высоким пространственным разрешением
- •21. Перечислите длины волн спектральных каналов сканера avhrr
- •22. Почему спутники среднего и высокого разрешения не обеспечивают
- •23. Каково назначение спектральных каналов сканера modis спутников
- •24. Особенности распространения радиоволн на трассе спутник-Земля
- •25. Назовите причины, ограничивающие скорость передачи информации
- •26. Геометрические искажения спутниковых изображений
- •27. Геометрическая коррекция и топографическая привязка спутниковых изображений
- •28. Что такое радиометрическая коррекция
- •29. Что такое атмосферная коррекция
- •30. В чем причины искажения изображений, передаваемых со спутников
- •31. Опишите виды изображений
- •32. Ввод изображений с помощью настольного сканера
- •33. Что такое современные мониторы
- •34. Струйный и лазерный принтеры
- •35. Предложите математические модели линейного и точечного изображений.
- •37. Структура графического файла
- •38. В чем особенности применения растровой и векторной графики-Преимущества векторного способа описания графики над растровой графикой
- •39. Что такое групповое кодирование
- •40. Для чего применяется формат cmyk
- •41. Какие статистические характеристики изображения описывают его
- •42. Модель искаженного изображения
- •43. Дополнительные средства обработки изображений
- •44. Опишите спутника Ikonos-Спутник ikonos
- •45. Назовите виды спутника Landsat
- •Решаемые задачи:
- •46. Охарактеризуйте спутника KazSat
- •Основные технические данные
- •47. Физические основы дистанционного зондирования в оптическом
- •48. Пассивные и активные методы дистанционного зондирования.
- •49. Отражательная способность поверхности
- •50. Сведения о составе атмосферы
- •51. Ослабление и рассеяние восходящего излучения в атмосфере
- •52. Оптические методы излучения
- •53. Опишите орбиты космических аппаратов
- •54. Особенности технологии дистанционного зондирования.
- •55. История развития дистанционного зондирования Земли
- •57. Геометрические искажения спутниковых изображений
- •58. Опишите виды изображений
50. Сведения о составе атмосферы
При дистанционном зондировании поверхности Земли атмосфера является возмущающей средой, которая искажает спутниковые данные, а в некоторых участках электромагнитного диапазона, например в дальнем инфракрасном с длиной волны около 100 мкм, вообще препятствует дистанционному зондированию. С другой стороны, спектральные линии поглощения газов однозначно характеризуют эти газы, а интенсивность и ширина линий отражают физические параметры газов (температуру, плотность, общее количество молекул). Это дает возможность дистанционными методами изучать саму атмосферу. До высоты 100 км атмосферные газы равномерно перемешаны. К главным газам атмосферы относят кислород O2 (около 21 % воздуха по объему), азот N2 (около 78 %) и аргон Ar (несколько менее 1 %). Влияние их на наблюдение Земли из космоса незначительно. Важным компонентом атмосферы является водяной пар, содержание которого в атмосфере не постоянно и относительно невелико. Он имеет очень большое число линий поглощения в инфракрасном и микроволновом диапазонах спектра, начиная с λ = 0,72 мкм и далее у 0,81; 0,94; 1,1; 1,38; 1,87; 2,7−3,2; 6,3 мкм. Углекислый газ CO2 имеет две узкие линии поглощения при λ = 2,7 мкм, λ = 4,26 мкм и вызывает сильное поглощение в дальней инфракрасной зоне спектра начиная с λ = 13 мкм; центр линии приходится на λ = 15 мкм. Известны 30−40 газов, содержащихся в атмосфере в небольших количествах (так называемых малых газов), имеющих как естественное, так и антропогенное происхождение. Некоторые из них, а также углекислый газ могут оказывать влияние на климат Земли и на здоровье человека. К числу малых газов естественного происхождения относят закись азота N2O и метан CH4 (результат деятельности бактерий), сернистый ангидрид SO2, сернистый карбонил COS, сероводород H2S и др. (вулканические выбросы). К малым газам антропогенного происхождения относят отходы топок, производства, транспорта, сельского хозяйства: SO2, CO, хлорводород HCl, фреоны CClxFy и другие. Малые газы, водяной пар и CO2 вызывают ослабление излучения из-за дискретного поглощения в таких важных диапазонах длин волн, как ближний инфракрасный (~1 мкм) и тепловой инфракрасный (λ >10 мкм). В результате в дальнем ИК прозрачным сохраняется только один широкий диапазон длин волн 8–12 мкм, в то время как в ближнем и среднем ИК в зоне длин волн менее 4 мкм имеются четыре узких диапазона, которые используются для дистанционного зондирования.
51. Ослабление и рассеяние восходящего излучения в атмосфере
Атмосфера ослабляет восходящее излучение от поверхности Земли, и в полосах прозрачности происходит поглощение и рассеяние света молекулами газов, капельками воды, пылинками. Оптическая толщина τ – безразмерная величина, произведение объемного коэффициента ослабления света атмосферой на геометрическую длину пути светового луча. При малости эффектов многократного рассеяния, т. е. в пределах справедливости закона Бугера, имеем: I1 = I0 exp(–τ), где I0 и I1 − интенсивности в начальной (на поверхности Земли) и в конечной (на орбите спутника) точках при наблюдении в надире. Если наблюдение проводится под углом δ к надиру (рис. 2.3), то для однородной атмосферы I2 = I0 exp(–τ sec δ). Формула не учитывает кривизну Земли и возможные локальные неоднородности (туман, дымки, облака пыли и т. д.), поэтому расчет приближенный. При рассеянии света молекулами газов, капельками воды, пылинками наблюдается ряд закономерностей. Интенсивность молекулярного рассеяния пропорциональна λ–4, эффект наиболее заметен в коротковолновой части спектра, он ответствен за голубой цвет неба. Рассеяние на аэрозолях (размер частиц от 0,1λ до 10λ) приводит к более слабой зависимости интенсивности от длины волны λ–α , 0 < α < 4. Частицы дыма и облаков имеют размеры, много большие, чем длина волны видимого и ИК-диапазонов.
