Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кудайбергенов.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
820.34 Кб
Скачать

42. Модель искаженного изображения

Реальные изображения наряду с полезной информацией содержат различные помехи. Источниками помех являются собственные шумы фотоприемных устройств, зернистость фотоматериалов, шумы каналов связи. Наконец, возможны геометрические и радиометрические искажения, изображение может быть расфокусировано (но расфокусировка не типична для спутниковых изображений с разрешением 10 м и более); для изображений с разрешением 1 м и менее турбулентность атмосферы приводит к размыванию мелких деталей при коротких экспозициях. Модель искаженного помехами непрерывного изображения имеет вид: f(x, y) = m(x, y)·Qs(x, y) + n(x, y), где f(x, y) − искаженное изображение, m(x, y) − мультипликативная помеха, модулирующая изображение по яркости, s(x, y) − исходное изображение; Q − функционал, описывающий геометрические и радиометрические искажения, а также расфокусировку; n(x, y) − аддитивная помеха, накладывающаяся на изображение. Модуляция спутникового изображения по яркости может происходить из-за того, что атмосфера над различными точками Земли имеет различную прозрачность, восходящее излучение от этих точек проходит различный путь в атмосфере. При реставрации изображений необходимо восстановить исходное изображение. Выше рассмотрены методы устранения геометрических, радиометрических искажений, атмосферной коррекции, восстановления пропущенных пикселов. Будем считать, что эти искажения отсутствуют, m(x, y) = 1. Таким образом, f(x, y) = Qs(x, y) + n(x, y). Результат реставрации ŝ(x, y) = g(x, y) запишем как следствие воздействия на f(x, y) некоторого оператора: g(x, y) = Tf(x, y). Оператор T (системный оператор) указывает на правило, по которому «входному сигналу» f(x, y) ставится в соответствие «выходной сигнал» g(x, y). Для того чтобы модель была полной, необходимо также указать области допустимых значений f(x, y) и g(x, y). При реставрации применяют оператор Т, минимизирующей расстояние между g(x, y) и s(x, y) при заданных статистических характеристиках случайных полей s(x, y), n(x, y) и известном F. В качестве критерия близости g(x, y) и s(x, y) часто используют критерий минимума среднеквадратической ошибки: min . В задачах улучшения изображений обычно считается, что n(x, y) = 0, функцией оператора Т является сглаживание резких перепадов яркости, подчеркивание или выделения контуров и т. п. Мы будем рассматривать пространственно-инвариантные операторы, выходная реакция которых не зависит от изменения начала отсчета по x и по y и от ориентации объектов на изображении. Первое условие означает, что оператор переводит однородное случайное поле в однородное. Второе условие означает, что оператор переводит изотропное поле в изотропное. Отметим, что свойства пространственной инвариантности выполняются строго, если области допустимых значений координат x, y попадают в интервал (−∞, ∞). Реальные изображения имеют конечные размеры, A ≤ x ≤ B; C ≤ y ≤ D, условие пространственной инвариантности выполняется приближенно.

43. Дополнительные средства обработки изображений

  • .

Важным современным направлением обработки изображений является восстановление трехмерного изображения по его двумерным проекциям − компьютерная томография, играющая большую роль в медицине и в технологическом контроле в промышленности. Регистрация, компьютерная обработка и воспроизведение изображений предполагают их организацию в виде двумерного массива fij, i = 1, ..., n, j = 1, ..., m, где fij – яркость пиксела (элемента изображения) в i-й строке и j-м столбце. Такая организация используется в датчиках изображений − сканерах авиационного и космического базирования, телевизионных камерах, настольных сканерах, в цифровых фотоаппаратах и др. Рассмотренный способ представления изображений называется растровой графикой. Растровая графика используется также в мониторах ЭВМ. На рис. 8.2 несколько строк растрового изображения показаны в увеличенном виде, видны отдельные пикселы. Рассмотренные датчики позволяют получать полутоновые и цветные изображения в аналоговой форме. Для ввода в ЭВМ их необходимо преобразовать в некоторую числовую матрицу. Процесс преобразования называется дискретизацией и состоит из выборки и квантования. Первая заключается в выборе на поле наблюдения некоторого множества точек, в каждой из которых измеряется величина яркости f(x, y). При использовании ПЭВМ для обработки изображений нередко применяется формат 512×512, так что упомянутое множество точек состоит из 512 ⋅ 512 = 262 144 пикселов. Выборка производится с некоторым шагом, который и характеризует пространственное разрешение. При использовании сканеров космического базирования разрешение обычно определяется скоростью спутника и частотой сканирования. В настоящее время основным устройством ввода изображений в ЭВМ с плоских оригиналов является планшетный сканер (Desk Scanner) – (рис. 8.3). В практике дистанционных исследований он применяется для ввода топографических карт. Типичный планшетный сканер содержит источник света, систему зеркал (одно из них вместе с лампой перемещается посредством шагового двигателя вдоль сканируемого изображения).