- •3. Физические основы дистанционного зондирования в оптическом
- •5. Отражательная способность поверхности
- •6. Наблюдение растительного и снегового покрова
- •7. Сведения о составе атмосферы
- •8. Ослабление и рассеяние восходящего излучения в атмосфере
- •9. Оптические методы излучения
- •10. Сканер с цилиндрической и с линейной разверткой
- •11. Как устроены сканеры с цилиндрической и линейной разверткой
- •12. Что такое мгновенное поле зрения
- •13. Что такое пространственное разрешение сканера
- •14. Охарактеризуйте принцип работы радиолокатора бокового обзора
- •15. Опишите принцип синтеза апертуры
- •16. Что такое солнечно-синхронная орбита
- •17. Опишите орбиты космических аппаратов
- •18. Спутники с низким пространственным разрешением
- •19. Спутники со средним пространственным разрешением
- •20. Спутники с высоким пространственным разрешением
- •21. Перечислите длины волн спектральных каналов сканера avhrr
- •22. Почему спутники среднего и высокого разрешения не обеспечивают
- •23. Каково назначение спектральных каналов сканера modis спутников
- •24. Особенности распространения радиоволн на трассе спутник-Земля
- •25. Назовите причины, ограничивающие скорость передачи информации
- •26. Геометрические искажения спутниковых изображений
- •27. Геометрическая коррекция и топографическая привязка спутниковых изображений
- •28. Что такое радиометрическая коррекция
- •29. Что такое атмосферная коррекция
- •30. В чем причины искажения изображений, передаваемых со спутников
- •31. Опишите виды изображений
- •32. Ввод изображений с помощью настольного сканера
- •33. Что такое современные мониторы
- •34. Струйный и лазерный принтеры
- •35. Предложите математические модели линейного и точечного изображений.
- •37. Структура графического файла
- •38. В чем особенности применения растровой и векторной графики-Преимущества векторного способа описания графики над растровой графикой
- •39. Что такое групповое кодирование
- •40. Для чего применяется формат cmyk
- •41. Какие статистические характеристики изображения описывают его
- •42. Модель искаженного изображения
- •43. Дополнительные средства обработки изображений
- •44. Опишите спутника Ikonos-Спутник ikonos
- •45. Назовите виды спутника Landsat
- •Решаемые задачи:
- •46. Охарактеризуйте спутника KazSat
- •Основные технические данные
- •47. Физические основы дистанционного зондирования в оптическом
- •48. Пассивные и активные методы дистанционного зондирования.
- •49. Отражательная способность поверхности
- •50. Сведения о составе атмосферы
- •51. Ослабление и рассеяние восходящего излучения в атмосфере
- •52. Оптические методы излучения
- •53. Опишите орбиты космических аппаратов
- •54. Особенности технологии дистанционного зондирования.
- •55. История развития дистанционного зондирования Земли
- •57. Геометрические искажения спутниковых изображений
- •58. Опишите виды изображений
29. Что такое атмосферная коррекция
Задача атмосферной коррекции является наиболее сложной из задач реставрации результатов дистанционного зондирования Земли. В первую очередь, это связано с тем, что, как правило, информация об оптической толщине τ атмосферы над интересующими объектами отсутствует. Обычно космические изображения суши, на которых значительную часть занимает облачность, выбраковываются. Нередко дальнейшая обработка оставшихся изображений ведется без атмосферной коррекции. Лучшим выходом из положения была бы установка по всей поверхности суши сети солнечных спектрофотометров. Назначение этих приборов − измерение интенсивности I солнечного излучения, прошедшего через атмосферу, в различных участках спектра. Зная интенсивность I0 за пределами атмосферы, по закону Бугера I = I0 exp(−τ sec δ) можно оценить τ для разных длин волн оптического диапазона: τ =1/sec δ·ln(I0/I). Здесь δ − зенитный угол Солнца (см. рис 2.3). К сожалению, такой сети не существует, приходится довольствоваться данными немногих спектрофотометров или прибегать к косвенным методам коррекции. Например, можно оценить яркость в голубом участке спектра. Если атмосфера прозрачная, то яркость ее невелика. Увеличение яркости свидетельствует о наличии аэрозоля. Такой метод не очень точен, но атмосферная коррекция по голубому участку спектра применяется при обработке изображений, полученных с помощью сканера MODIS (спутники TERRA и AQUA). Проще дело обстоит с атмосферой над морями и океанами. В красном и ИК участках спектра поверхность воды по своим оптическим характеристикам близка к абсолютно черному телу. Существенно больший коэффициент отражения и рассеяния имеют туманы, дымки, облака, их хорошо видно на фоне воды. Это позволяет оценить оптическую толщину τ. Данные по τ над морями и океанами помещены в сети Интернет по адресу: http://las.saa.noaa.gov/las-bin/climate_server/, их можно использовать для коррекции спутниковых изображений прибрежных районов.
30. В чем причины искажения изображений, передаваемых со спутников
дистанционного зондирования
Радиолокационные станции бокового обзора наблюдают поверхность Земли под углом к надиру, существенно превышающем углы отклонения оси сканирования оптических сканеров МСУ-Э и других. Таким образом, радиолокационным изображениям в еще большей степени присущи те же перспективные искажения, что и упомянутым выше сканерам. На радиолокационных изображениях предметов на местности возникают также некоторые специфические искажения. При формировании сканерных изображений в оптическом диапазоне источник энергии (Солнце) находится в одной точке небесной сферы, а приемник на борту спутника − в другой. При использовании РЛС БО и источник энергии (передатчик), и приемник находятся в одной точке (на спутнике), на блюдение производится под углом визирования в 20−30° к горизонту. Может случиться так, что радиоволна упадет на склон горы под прямым углом. В этом случае изображение склона сожмется почти до нуля, а задний склон окажется в зоне радиотени и растянется (это можно заметить на следующем слайде). Полностью устранить эти искажения путем обработки на ЭВМ не представляется возможным. В то же время на изображении, полученном оптическим сканером, оба склона имеют размеры, более близкие к реальным. Рассмотренные причины геометрических искажений спутниковых изображений не являются единственно возможными. Солнечно-синхронные орбиты природоведческих спутников проходят не через ось вращения Земли, а имеют наклон относительно нее. Поэтому если спутник движется с севера на юг (нисходящий виток орбиты), то вверху изображения будет не север, как на карте, а, например, северо-северо-восток. К тому же во время сеанса приема спутниковой информации Земля поворачивается на некоторый угол (за 1 мин на 0,25°). Кроме «свежих» сканерных изображений приходится обрабатывать архивные изображения, для которых орбитальные данные неизвестны, так же, как бывает неизвестен угол отклонения оси сканирования от надира (для спутников «Ресурс-01-3», сканер МСУ-Э; спутник SPOT, сканер HVR). В этих случаях необходим другой метод геометрической коррекции.
