- •1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
- •2. Объясните основные понятия и аксиомы статики.
- •3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
- •4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
- •5. Объясните, как определяется величина и знак проекции силы на координатные оси.
- •6. Запишите аналитическое условие и уравнение равновесия плоской системы сходящихся сил.
- •7. Дайте определение понятию «пара сил», опишите ее свойства. Изложите условия равновесия пар сил.
- •8. Объясните, как определяется величина и знак момента силы относительно точки.
- •10. Запишите условия и уравнения равновесия плоской системы произвольно расположенных сил.
- •11. Объясните, как определяются проекции силы на три взаимно перпендикулярные оси.
- •12. Объясните, для чего строится силовой параллелепипед. Изложите условия и уравнения равновесия пространственной системы сходящихся сил.
- •13. Объясните, как определяется момент силы относительно точки.
- •14. Запишите условия и уравнения равновесия пространственной произвольной системы сил.
- •15. Дайте определение понятию «центр параллельных сил» и объясните, как он находится.
- •16. Объясните, как определить центр тяжести простых и сложных плоских фигур.
- •17. Объясните, как определить центр тяжести для различных тел.
- •18. Объясните, как определить центр тяжести сечений, составленных из прокатных профилей.
- •19. Изложите, что изучает кинематика. Сформулируйте основные понятия и определения.
- •20. Объясните, какие существуют способы задания движения точки и для чего они применяются.
- •21. Изложите определение, уравнение, формулы и графики равномерного движения точки.
- •22. Изложите определение, уравнение, формулы и графики равнопеременного движения точки.
- •23. Дайте определение поступательного движения твердого тела. Изложите его характеристики.
- •24. Дайте определение вращательного движения твердого тела. Изложите его параметры.
- •25. Изложите определение, уравнение и формулы равномерного вращения твердого тела.
- •26. Изложите определение, уравнение и формулы равнопеременного вращения твердого тела.
- •27. Запишите и объясните зависимости между угловыми и линейными параметрами вращающегося тела.
- •28. Объясните, чем характеризуется сложное движение материальной точки и как определяется его скорость.
- •29. Объясните, чем характеризуется сложное движение твердого тела. Дайте определение понятию «мгновенный центр скоростей».
- •30. Назовите объект и предмет, которые изучает динамика. Дайте определение основным понятиям динамики. Перечислите аксиомы динамики.
- •31. Объясните сущность сил инерции. Объясните, как определяются силы инерции при прямолинейном и криволинейном движениях.
- •32. Сформулируйте сущность принципа Даламбера и метода кинетостатики. Назовите его применение.
- •33. Объясните, как определяется работа постоянной силы. Назовите единицы измерения работы.
- •34. Объясните, как определяется работа сил тяжести. Дайте определение понятию «кпд».
- •35. Объясните, что такое мощность. Назовите единицы измерения мощности.
- •36. Объясните, как определяется работа и мощность при вращательном движении.
- •37. Раскройте сущность понятий «трение скольжения», «коэффициент трения», «сила трения», «угол трения» и «конус трения».
- •38. Раскройте сущность понятий «трение качения». Перечислите основные параметры.
- •39. Дайте определение понятиям «количество движения» и «импульс силы». Сформулируйте теорему об изменении количества движения.
- •40. Дайте определение понятию «механическая энергия». Перечислите виды механической энергии. Сформулируйте теорему об изменении кинетической энергии.
- •41. Назовите объект и предмет, которые изучает сопротивление материалов. Перечислите основные задачи. Дайте определение понятиям «прочность», «жесткость» и «устойчивость».
- •42. Объясните, чем отличаются упругие и пластические деформации. Перечислите основные допущения сопротивления материалов.
- •43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
- •44. Объясните, как определяется величина и знак продольной силы. Изложите порядок построения эпюры продольной силы.
- •45. Перечислите и объясните виды продольной и поперечной деформации. Сформулируйте закон Гука. Объясните, что характеризует коэффициент Пуассона.
- •46. Дайте определение и покажите зависимости между предельными, допускаемыми и расчетными напряжениями.
- •47. Объясните, как определяются напряжения при растяжении-сжатии? Изложите условие прочности и расчеты на прочность.
- •48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
- •49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
- •50. Объясните, как проводятся расчеты на прочность сварных соединений.
- •51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
- •52. Определите моменты инерции простых сечений.
- •53. Дайте определение понятию «момент инерции». Объясните, как определить расположение главных осей и главные центральные моменты инерции.
- •54. Объясните, чему равен крутящий момент. Изложите порядок построения эпюры крутящих моментов.
- •55. Изложите определение напряжений, условие прочности и расчеты на прочность при кручении.
- •56. Изложите, какие существуют расчеты на прочность и жесткость при кручении. Объясните, как они выполняются.
50. Объясните, как проводятся расчеты на прочность сварных соединений.
В зависимости от расположения свариваемых деталей различают следующие виды соединений: стыковые, нахлесточные, тавровые и угловые.
Стыковые соединения на прочность рассчитывают по номинальному сечению соединяемых элементов без учета утолщения швов. Для расчета швов используются те же зависимости, что и для целых элементов. Формулы для расчета:
1 – напряжения растяжения (сжатия); 2 – напряжения от изгибающего момента в плоскости соединяемых элементов; 3 – напряжение от изгибающего момента в плоскости соединяемых элементов и растягивающей (или сжимающей) силы.
Нахлесточные соединения, как правило, выполняют угловыми швами. Угловые швы по расположению относительно нагрузки разделяют на: поперечные или лобовые, расположенные перпендикулярно направлению силы; продольные или фланговые, расположенные параллельно направлению силы; косые, расположенные под углом к направлению силы; комбинированные, представляющие собой сочетание перечисленных швов. Разрушение угловых швов происходит по наименьшему сечению, совпадающему с биссектрисой прямого угла. Расчетная толщина шва s = k ∙ sin45o = 0,7k. Угловой шов испытывает сложное напряженное состояние. Однако в упрощенном расчете такой шов условно рассчитывают на срез:
Допускаемые напряжения зависят от величины допускаемого напряжения основного материала с учетом коэффициента прочности сварного соединения. В зависимости от способа сварки, качества и марки электродов φ = 0,6...1.
Угловые соединения рассчитывают только по касательным напряжениям независимо от их расположения к направлению нагрузки. Комбинированные соединения лобовыми и фланговыми швами рассчитывают на основе принципа распределения нагрузки пропорционально несущей способности отдельных швов. Если соединяемая деталь асимметрична, то расчет прочности производят с учетом нагрузки, воспринимаемой каждым швом.
При нагружении соединения с лобовым швом моментом сил в плоскости стыка:
Тавровые соединения, нагруженные изгибающим моментом, рассчитывают как консольные, но с учетом особенностей сварки. В случае приварки балки без скоса кромок, сварные швы, как и все угловые, рассчитывают по касательным напряжениям. Расчетный момент сопротивления выражается через параметры опасных сечений сварных швов:
Если балка приварена со скосом кромок, то швы рассчитывают по нормальным напряжениям.
51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
Площадь сечения является одной из геометрических характеристик, используемых, главным образом, в расчетах на растяжение и сжатие. При расчетах на кручение, изгиб, а также на устойчивость используются более сложные геометрические характеристики: статические моменты, моменты инерции, моменты сопротивления и т.д. Для вычисления геометрических характеристик сложных сечений, состоящих из простейших фигур, они разбиваются на конечное число n простейших частей. Площадь всегда положительна и не зависит от выбора системы координат.
Статический момент плоского сечения относительно некоторой оси называется, взятая по всей его площади сумма произведений площадей элементарных площадок на их расстояния от этой оси. Знак зависит от расположения осей. Статические моменты площади сечения равны нулю (Sx = 0 и Sy = 0), если точка пересечения координатных осей совпадает с центром тяжести сечения. Ось, относительно которой статический момент равен, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения.
Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси. Знак всегда «+». Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения. Чем дальше площадь удалена от центральной оси, тем осевой момент инерции сечения больше. Жесткость конструкции повышается.
Полярный момент инерции сечения равен сумме осевых моментов. При повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.
Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей. Знак «+» или «–». Таким образом для симметричных фигур центробежный момент инерции равен 0.
Координатные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называются главными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.
