- •1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
- •2. Объясните основные понятия и аксиомы статики.
- •3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
- •4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
- •5. Объясните, как определяется величина и знак проекции силы на координатные оси.
- •6. Запишите аналитическое условие и уравнение равновесия плоской системы сходящихся сил.
- •7. Дайте определение понятию «пара сил», опишите ее свойства. Изложите условия равновесия пар сил.
- •8. Объясните, как определяется величина и знак момента силы относительно точки.
- •10. Запишите условия и уравнения равновесия плоской системы произвольно расположенных сил.
- •11. Объясните, как определяются проекции силы на три взаимно перпендикулярные оси.
- •12. Объясните, для чего строится силовой параллелепипед. Изложите условия и уравнения равновесия пространственной системы сходящихся сил.
- •13. Объясните, как определяется момент силы относительно точки.
- •14. Запишите условия и уравнения равновесия пространственной произвольной системы сил.
- •15. Дайте определение понятию «центр параллельных сил» и объясните, как он находится.
- •16. Объясните, как определить центр тяжести простых и сложных плоских фигур.
- •17. Объясните, как определить центр тяжести для различных тел.
- •18. Объясните, как определить центр тяжести сечений, составленных из прокатных профилей.
- •19. Изложите, что изучает кинематика. Сформулируйте основные понятия и определения.
- •20. Объясните, какие существуют способы задания движения точки и для чего они применяются.
- •21. Изложите определение, уравнение, формулы и графики равномерного движения точки.
- •22. Изложите определение, уравнение, формулы и графики равнопеременного движения точки.
- •23. Дайте определение поступательного движения твердого тела. Изложите его характеристики.
- •24. Дайте определение вращательного движения твердого тела. Изложите его параметры.
- •25. Изложите определение, уравнение и формулы равномерного вращения твердого тела.
- •26. Изложите определение, уравнение и формулы равнопеременного вращения твердого тела.
- •27. Запишите и объясните зависимости между угловыми и линейными параметрами вращающегося тела.
- •28. Объясните, чем характеризуется сложное движение материальной точки и как определяется его скорость.
- •29. Объясните, чем характеризуется сложное движение твердого тела. Дайте определение понятию «мгновенный центр скоростей».
- •30. Назовите объект и предмет, которые изучает динамика. Дайте определение основным понятиям динамики. Перечислите аксиомы динамики.
- •31. Объясните сущность сил инерции. Объясните, как определяются силы инерции при прямолинейном и криволинейном движениях.
- •32. Сформулируйте сущность принципа Даламбера и метода кинетостатики. Назовите его применение.
- •33. Объясните, как определяется работа постоянной силы. Назовите единицы измерения работы.
- •34. Объясните, как определяется работа сил тяжести. Дайте определение понятию «кпд».
- •35. Объясните, что такое мощность. Назовите единицы измерения мощности.
- •36. Объясните, как определяется работа и мощность при вращательном движении.
- •37. Раскройте сущность понятий «трение скольжения», «коэффициент трения», «сила трения», «угол трения» и «конус трения».
- •38. Раскройте сущность понятий «трение качения». Перечислите основные параметры.
- •39. Дайте определение понятиям «количество движения» и «импульс силы». Сформулируйте теорему об изменении количества движения.
- •40. Дайте определение понятию «механическая энергия». Перечислите виды механической энергии. Сформулируйте теорему об изменении кинетической энергии.
- •41. Назовите объект и предмет, которые изучает сопротивление материалов. Перечислите основные задачи. Дайте определение понятиям «прочность», «жесткость» и «устойчивость».
- •42. Объясните, чем отличаются упругие и пластические деформации. Перечислите основные допущения сопротивления материалов.
- •43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
- •44. Объясните, как определяется величина и знак продольной силы. Изложите порядок построения эпюры продольной силы.
- •45. Перечислите и объясните виды продольной и поперечной деформации. Сформулируйте закон Гука. Объясните, что характеризует коэффициент Пуассона.
- •46. Дайте определение и покажите зависимости между предельными, допускаемыми и расчетными напряжениями.
- •47. Объясните, как определяются напряжения при растяжении-сжатии? Изложите условие прочности и расчеты на прочность.
- •48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
- •49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
- •50. Объясните, как проводятся расчеты на прочность сварных соединений.
- •51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
- •52. Определите моменты инерции простых сечений.
- •53. Дайте определение понятию «момент инерции». Объясните, как определить расположение главных осей и главные центральные моменты инерции.
- •54. Объясните, чему равен крутящий момент. Изложите порядок построения эпюры крутящих моментов.
- •55. Изложите определение напряжений, условие прочности и расчеты на прочность при кручении.
- •56. Изложите, какие существуют расчеты на прочность и жесткость при кручении. Объясните, как они выполняются.
48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
Испытания на растяжение (сжатие) наиболее распространены так как они относительно просты, дают результаты, позволяющие судить с высокой достоверностью о свойствах материалов и при других видах деформаций.
Все материалы можно условно подразделить на пластичные и хрупкие. К весьма пластичным материалам относят малоуглеродистые стали, алюминий, медь. Эти материалы обладают способностью деформироваться в широких пределах без разрушения. К хрупким материалам можно отнести высокоуглеродистые сорта стали, чугун, керамику, стекло, бетон. Они разрушаются без заметной предварительной деформации. Промежуточное положение занимают сплавы цветных металлов (бронза, латунь, дюралюминий), многие сорта легированных сталей.
При испытании на растяжение, согласно ГОСТ 1497, определяют сопротивление металла малым пластическим деформациям, характеризующееся пределом пропорциональности σпц, пределам упругости σу и пределом текучести σт (или σ0,2), а также сопротивление значительным пластическим деформациям, которое выражают временным сопротивлением σв. При растяжении определяют и пластичность металла, то есть величину пластической деформации до разрушения, которая может быть оценена относительным удлинением образца δ и его относительным сужением ψ (после разрыва образца).
Для испытания на растяжение используют стандартные образцы. Машина для испытаний снабжена устройством, записывающим диаграмму растяжения.
Испытание на сжатие обычно применяют для определения механических свойств хрупких материалов. Цилиндрические образцы диаметром 10...25 мм и высотой, равной диаметру, подвергают сжатию, фиксируя при этом упругие и остаточные деформации. Торцовые поверхности образцов должны быть отшлифованы, плоскопараллельными и перпендикулярными к оси образца. Большое влияние на результаты испытания оказывает трение на торцах об разцов. Для уменьшения трения применяют специальные прокладки (свинцовые) или смазку торцов.
Испытание на сжатие производят на тех же машинах, что и испытание на растяжение, с использованием приспособлений (реверсов) для превращения растягивающей нагрузки в сжимающую. При испытании на сжатие получают диаграмму сжатия, по которой определяют основные механические характеристики испытуемого материала. В процессе сжатия образца из пластичного металла при напряжении ниже предела текучести металл ведет так же, как и при растяжении. После достижения предела текучести образец пластически деформируется, принимая бочкообразную форму. При смазке торцов или наличии мягких прокладок на торцах деформация образца по высоте получается более равномерной. Разрушение образца обычно происходит под углом 45° к линии действия сжимающей силы.
После испытания можно определить две механические характеристики пластичности материала: относительное остаточное удлинение, относительное остаточное поперечное сужение.
49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
Порядок расчета и на срез. На срез рассчитывают элементы, которыми соединяют различные детали, например, заклепки, штифты, болты (без зазора). Расчет носит приближенный характер и основан на следующих допущениях:
1) в поперечных сечениях рассматриваемых элементов возникает лишь один силовой фактор – поперечная сила Q;
2) при наличии нескольких одинаковых соединительных элементов каждый из них воспринимает одинаковую долю общей нагрузки, передаваемой соединением;
2) касательные напряжения распределены по сечению равномерно.
Условие прочности выражается формулой:
τср = Q/Fср ≤ [τ]ср
где Q – поперечная сила (при нескольких i соединительных элементах при передаче силы Pср; Q = Pср/i; τср – напряжение среза в плоскости рассчитываемого сечения; Fср – площадь среза; [τ]ср – допускаемое напряжение на срез.
Порядок расчета и на смятие. На смятие, как правило, рассчитывают элементы, которые соединены заклепками, штифтами, болтами. Смятию подвергаются стенки отверстий в зонах установки соединительных элементов. Обычно расчет на смятие выполняют для соединений, соединительные элементы которых рассчитывают на срез.
При расчете на смятие принимают, что силы взаимодействия между соприкасающимися деталями равномерно распределены по поверхности контакта и в каждой точке нормальны к этой поверхности. Силу взаимодействия, принято называть напряжением смятия. Расчет на прочность выполняется по формуле:
σсм=Pсм / (i ∙ Fсм) ≤ [σ]см
где σсм – действующее напряжение смятия; Pсм – усилие передаваемое соединением; i – число соединительных элементов; Fсм – расчетная площадь смятия; [σ]см – допускаемое напряжение смятия.
Из допущения о характере распределения сил взаимодействия по поверхности контакта следует, что если контакт осуществляется по поверхности полуцилиндра, то расчетная площадь Fсм равна площади проекции поверхности контакта на диаметральную плоскость, т.е. равна диаметру цилиндрической поверхности d на ее высоту δ: Fсм = d ∙ δ.
