- •1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
- •2. Объясните основные понятия и аксиомы статики.
- •3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
- •4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
- •5. Объясните, как определяется величина и знак проекции силы на координатные оси.
- •6. Запишите аналитическое условие и уравнение равновесия плоской системы сходящихся сил.
- •7. Дайте определение понятию «пара сил», опишите ее свойства. Изложите условия равновесия пар сил.
- •8. Объясните, как определяется величина и знак момента силы относительно точки.
- •10. Запишите условия и уравнения равновесия плоской системы произвольно расположенных сил.
- •11. Объясните, как определяются проекции силы на три взаимно перпендикулярные оси.
- •12. Объясните, для чего строится силовой параллелепипед. Изложите условия и уравнения равновесия пространственной системы сходящихся сил.
- •13. Объясните, как определяется момент силы относительно точки.
- •14. Запишите условия и уравнения равновесия пространственной произвольной системы сил.
- •15. Дайте определение понятию «центр параллельных сил» и объясните, как он находится.
- •16. Объясните, как определить центр тяжести простых и сложных плоских фигур.
- •17. Объясните, как определить центр тяжести для различных тел.
- •18. Объясните, как определить центр тяжести сечений, составленных из прокатных профилей.
- •19. Изложите, что изучает кинематика. Сформулируйте основные понятия и определения.
- •20. Объясните, какие существуют способы задания движения точки и для чего они применяются.
- •21. Изложите определение, уравнение, формулы и графики равномерного движения точки.
- •22. Изложите определение, уравнение, формулы и графики равнопеременного движения точки.
- •23. Дайте определение поступательного движения твердого тела. Изложите его характеристики.
- •24. Дайте определение вращательного движения твердого тела. Изложите его параметры.
- •25. Изложите определение, уравнение и формулы равномерного вращения твердого тела.
- •26. Изложите определение, уравнение и формулы равнопеременного вращения твердого тела.
- •27. Запишите и объясните зависимости между угловыми и линейными параметрами вращающегося тела.
- •28. Объясните, чем характеризуется сложное движение материальной точки и как определяется его скорость.
- •29. Объясните, чем характеризуется сложное движение твердого тела. Дайте определение понятию «мгновенный центр скоростей».
- •30. Назовите объект и предмет, которые изучает динамика. Дайте определение основным понятиям динамики. Перечислите аксиомы динамики.
- •31. Объясните сущность сил инерции. Объясните, как определяются силы инерции при прямолинейном и криволинейном движениях.
- •32. Сформулируйте сущность принципа Даламбера и метода кинетостатики. Назовите его применение.
- •33. Объясните, как определяется работа постоянной силы. Назовите единицы измерения работы.
- •34. Объясните, как определяется работа сил тяжести. Дайте определение понятию «кпд».
- •35. Объясните, что такое мощность. Назовите единицы измерения мощности.
- •36. Объясните, как определяется работа и мощность при вращательном движении.
- •37. Раскройте сущность понятий «трение скольжения», «коэффициент трения», «сила трения», «угол трения» и «конус трения».
- •38. Раскройте сущность понятий «трение качения». Перечислите основные параметры.
- •39. Дайте определение понятиям «количество движения» и «импульс силы». Сформулируйте теорему об изменении количества движения.
- •40. Дайте определение понятию «механическая энергия». Перечислите виды механической энергии. Сформулируйте теорему об изменении кинетической энергии.
- •41. Назовите объект и предмет, которые изучает сопротивление материалов. Перечислите основные задачи. Дайте определение понятиям «прочность», «жесткость» и «устойчивость».
- •42. Объясните, чем отличаются упругие и пластические деформации. Перечислите основные допущения сопротивления материалов.
- •43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
- •44. Объясните, как определяется величина и знак продольной силы. Изложите порядок построения эпюры продольной силы.
- •45. Перечислите и объясните виды продольной и поперечной деформации. Сформулируйте закон Гука. Объясните, что характеризует коэффициент Пуассона.
- •46. Дайте определение и покажите зависимости между предельными, допускаемыми и расчетными напряжениями.
- •47. Объясните, как определяются напряжения при растяжении-сжатии? Изложите условие прочности и расчеты на прочность.
- •48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
- •49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
- •50. Объясните, как проводятся расчеты на прочность сварных соединений.
- •51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
- •52. Определите моменты инерции простых сечений.
- •53. Дайте определение понятию «момент инерции». Объясните, как определить расположение главных осей и главные центральные моменты инерции.
- •54. Объясните, чему равен крутящий момент. Изложите порядок построения эпюры крутящих моментов.
- •55. Изложите определение напряжений, условие прочности и расчеты на прочность при кручении.
- •56. Изложите, какие существуют расчеты на прочность и жесткость при кручении. Объясните, как они выполняются.
43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
Для расчетов элементов конструкции на прочность необходимо знать внутренние силы упругости, возникающие в результате приложения внешних сил в разных точках и частях конструкции. Способы определения этих внутренних сил с помощью науки сопротивление материалов включают такой прием, как метод сечений.
Метод сечений заключается в том, что тело мысленно рассекается плоскостью на две части, любая из которых отбрасывается и взамен ее к сечению оставшейся части прикладываются внутренние силы, действовавшие на нее до разреза со стороны отброшенной части. Оставленная часть рассматривается как самостоятельное тело, находящееся в равновесии под действием приложенных к сечению внешних и внутренних сил. При применении этого метода выгоднее отбрасывать ту часть элемента конструкции (тела), для которой проще составить уравнение равновесия. Таким образом, появляется возможность определить внутренние силовые факторы в сечении, благодаря которым оставшаяся часть тела находится в равновесии. Применяя к оставленной части тела условия равновесия, невозможно найти закон распределения внутренних сил по сечению, но можно определить статические эквиваленты этих сил (равнодействующие силовые факторы).
Напряжение – это мера внутренних сил, возникающих в деформируемом теле под влиянием различных факторов. Механическое напряжение в точке тела определяется как отношение внутренней силы к единице площади в данной точке рассматриваемого сечения: σ = F/S. Единицей измерения в СИ является паскаль (Па)
Сила F, действующая на некоторой площадке S, обычно не перпендикулярна к ней, а направлена под некоторым углом, поэтому в теле возникают не только нормальные, но и касательные напряжения. В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие. Наличие в испытуемом образце механических надрезов, трещин, внутренних дефектов металла, сквозных отверстий, резких переходов от толстого к тонкому сечению и т.д. приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений. Пик напряжений (σk) тем больше, чем меньше радиус концентратора напряжения.
Различают временные и остаточные напряжения. Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные - остаются в теле после прекращения действия нагрузки. Внутренние напряжения могут возникать при неравномерном нагреве изделия вследствие неоднородного расширения металла в различных зонах. Эти напряжения называют температурными. Кроме того, напряжения возникают вследствие неоднородного протекания структурных превращений по объему и т. д. Их называют фазовыми или структурными.
В зависимости от взаимно уравновешенных объемов различают напряжения I, II и III рода. Напряжения I рода уравновешены в объеме всего тела, напряжения II рода – в пределах зерна, а напряжения III рода – в объемах кристаллической ячейки. Все эти виды напряжений взаимосвязаны между собой и изменение микронапряжений III рода вызывает образование макронапряжений I рода.
