- •1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
- •2. Объясните основные понятия и аксиомы статики.
- •3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
- •4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
- •5. Объясните, как определяется величина и знак проекции силы на координатные оси.
- •6. Запишите аналитическое условие и уравнение равновесия плоской системы сходящихся сил.
- •7. Дайте определение понятию «пара сил», опишите ее свойства. Изложите условия равновесия пар сил.
- •8. Объясните, как определяется величина и знак момента силы относительно точки.
- •10. Запишите условия и уравнения равновесия плоской системы произвольно расположенных сил.
- •11. Объясните, как определяются проекции силы на три взаимно перпендикулярные оси.
- •12. Объясните, для чего строится силовой параллелепипед. Изложите условия и уравнения равновесия пространственной системы сходящихся сил.
- •13. Объясните, как определяется момент силы относительно точки.
- •14. Запишите условия и уравнения равновесия пространственной произвольной системы сил.
- •15. Дайте определение понятию «центр параллельных сил» и объясните, как он находится.
- •16. Объясните, как определить центр тяжести простых и сложных плоских фигур.
- •17. Объясните, как определить центр тяжести для различных тел.
- •18. Объясните, как определить центр тяжести сечений, составленных из прокатных профилей.
- •19. Изложите, что изучает кинематика. Сформулируйте основные понятия и определения.
- •20. Объясните, какие существуют способы задания движения точки и для чего они применяются.
- •21. Изложите определение, уравнение, формулы и графики равномерного движения точки.
- •22. Изложите определение, уравнение, формулы и графики равнопеременного движения точки.
- •23. Дайте определение поступательного движения твердого тела. Изложите его характеристики.
- •24. Дайте определение вращательного движения твердого тела. Изложите его параметры.
- •25. Изложите определение, уравнение и формулы равномерного вращения твердого тела.
- •26. Изложите определение, уравнение и формулы равнопеременного вращения твердого тела.
- •27. Запишите и объясните зависимости между угловыми и линейными параметрами вращающегося тела.
- •28. Объясните, чем характеризуется сложное движение материальной точки и как определяется его скорость.
- •29. Объясните, чем характеризуется сложное движение твердого тела. Дайте определение понятию «мгновенный центр скоростей».
- •30. Назовите объект и предмет, которые изучает динамика. Дайте определение основным понятиям динамики. Перечислите аксиомы динамики.
- •31. Объясните сущность сил инерции. Объясните, как определяются силы инерции при прямолинейном и криволинейном движениях.
- •32. Сформулируйте сущность принципа Даламбера и метода кинетостатики. Назовите его применение.
- •33. Объясните, как определяется работа постоянной силы. Назовите единицы измерения работы.
- •34. Объясните, как определяется работа сил тяжести. Дайте определение понятию «кпд».
- •35. Объясните, что такое мощность. Назовите единицы измерения мощности.
- •36. Объясните, как определяется работа и мощность при вращательном движении.
- •37. Раскройте сущность понятий «трение скольжения», «коэффициент трения», «сила трения», «угол трения» и «конус трения».
- •38. Раскройте сущность понятий «трение качения». Перечислите основные параметры.
- •39. Дайте определение понятиям «количество движения» и «импульс силы». Сформулируйте теорему об изменении количества движения.
- •40. Дайте определение понятию «механическая энергия». Перечислите виды механической энергии. Сформулируйте теорему об изменении кинетической энергии.
- •41. Назовите объект и предмет, которые изучает сопротивление материалов. Перечислите основные задачи. Дайте определение понятиям «прочность», «жесткость» и «устойчивость».
- •42. Объясните, чем отличаются упругие и пластические деформации. Перечислите основные допущения сопротивления материалов.
- •43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
- •44. Объясните, как определяется величина и знак продольной силы. Изложите порядок построения эпюры продольной силы.
- •45. Перечислите и объясните виды продольной и поперечной деформации. Сформулируйте закон Гука. Объясните, что характеризует коэффициент Пуассона.
- •46. Дайте определение и покажите зависимости между предельными, допускаемыми и расчетными напряжениями.
- •47. Объясните, как определяются напряжения при растяжении-сжатии? Изложите условие прочности и расчеты на прочность.
- •48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
- •49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
- •50. Объясните, как проводятся расчеты на прочность сварных соединений.
- •51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
- •52. Определите моменты инерции простых сечений.
- •53. Дайте определение понятию «момент инерции». Объясните, как определить расположение главных осей и главные центральные моменты инерции.
- •54. Объясните, чему равен крутящий момент. Изложите порядок построения эпюры крутящих моментов.
- •55. Изложите определение напряжений, условие прочности и расчеты на прочность при кручении.
- •56. Изложите, какие существуют расчеты на прочность и жесткость при кручении. Объясните, как они выполняются.
3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
Связь – любое ограничение, препятствующие перемещению тела в пространстве. Тело, стремясь под действием приложенных сил осуществить перемещение, которому препятствует связь, будет действовать на нее с некоторой силой, называемой силой давления на связь. По закону о равенстве действия и противодействия, связь будет действовать на тело с такой же по модулю, но противоположно направленной силой.
Реакция связи – сила, с которой данная связь действует на тело, препятствуя тем или иным перемещениям. Одним из основных положений механики является принцип освобождаемости от связей: всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями связей. Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.
Балка – конструктивная деталь какого-либо сооружения, выполняемая в большинстве случаев в виде прямого бруса с опорами в двух (или более) точках. Очень часто в машинах и конструкциях встречаются тела удлиненной формы, называемые балками (или балочными системами). Балки в основном предназначены для восприятия поперечных нагрузок. Балки имеют специальные опорные устройства для сопряжения их с другими элементами и передачи на них усилий.
Применяются следующие виды опор балочных систем:
Шарнирно-подвижная опора (а). Эта опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плоскости. В этой опоре известны точка приложения опорной реакции – центр шарнира и ее направление – перпендикуляр к опорной плоскости. Здесь остается неизвестным числовое значение опорной реакции RA. Следует отметить, что опорная поверхность шарнирно-подвижной опоры может быть не параллельна оси балки. Реакция RA в этом случае не будет перпендикулярна оси балки, так как она перпендикулярна опорной поверхности.
Шарнирно-неподвижная опора (б). Эта опора допускает поворот вокруг оси шарнира, но не допускает никаких линейных перемещений. В данном случае известна только точка приложения опорной реакции – центр шарнира; направление и значение опорной реакции неизвестны. Обычно вместо определения значения и направления (полной) реакции RA находят ее составляющие RAx и RAy.
Жесткая заделка (защемление) (в). Такая опора не допускает ни линейных перемещений, ни поворота. Неизвестными в данном случае являются не только значение и направление реакции, но и точка ее приложения. Поэтому жесткую заделку заменяют силой реакции RA и парой сил с моментом МА. Для определения опорной реакции следует найти три неизвестных: составляющие RAx и RAy опорной реакции по осям координат и реактивный момент МА.
4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
Плоская система сходящихся сил – система сил, линии действия которых лежат в одной плоскости и все пересекаются в одной точке.
Геометрический метод сложения плоской системы сходящихся сил. Величина, равная геометрической сумме сил какой-нибудь системы – главный вектор этой системы сил. Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сложением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным.
Для нахождения этим способом суммы сил F1, F2 , F3, ... Fn , (рис. a), откладываем от произвольной точки О (рис. б) вектор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор ab, изображающий силу F2, от точки b откладываем вектор bc, изображающий силу F3 и т. д.; от конца m предпоследнего вектора откладываем вектор mn, изображающий силу Fn. Соединяя начало первого вектора с концом последнего, получаем вектор On = R, изображающий геометрическую сумму или главный вектор слагаемых сил:
От порядка, в котором будут откладываться векторы сил, модуль и направление R не зависят.
Отсюда получаем два важных вывода:
1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».
2) Уравновешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравновешенных сил.
Геометрическое условие равновесия. Так как равнодействующая R сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то R может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда многоугольник замкнется. Следовательно, для равновесия системы, сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут.
