- •1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
- •2. Объясните основные понятия и аксиомы статики.
- •3. Раскройте сущность понятий «связь» и «реакции связей». Перечислите типы балочных систем и их реакции.
- •4. Раскройте сущность и опишите применение геометрического метода сложения плоской системы сходящихся сил. Сформулируйте геометрическое условие равновесия.
- •5. Объясните, как определяется величина и знак проекции силы на координатные оси.
- •6. Запишите аналитическое условие и уравнение равновесия плоской системы сходящихся сил.
- •7. Дайте определение понятию «пара сил», опишите ее свойства. Изложите условия равновесия пар сил.
- •8. Объясните, как определяется величина и знак момента силы относительно точки.
- •10. Запишите условия и уравнения равновесия плоской системы произвольно расположенных сил.
- •11. Объясните, как определяются проекции силы на три взаимно перпендикулярные оси.
- •12. Объясните, для чего строится силовой параллелепипед. Изложите условия и уравнения равновесия пространственной системы сходящихся сил.
- •13. Объясните, как определяется момент силы относительно точки.
- •14. Запишите условия и уравнения равновесия пространственной произвольной системы сил.
- •15. Дайте определение понятию «центр параллельных сил» и объясните, как он находится.
- •16. Объясните, как определить центр тяжести простых и сложных плоских фигур.
- •17. Объясните, как определить центр тяжести для различных тел.
- •18. Объясните, как определить центр тяжести сечений, составленных из прокатных профилей.
- •19. Изложите, что изучает кинематика. Сформулируйте основные понятия и определения.
- •20. Объясните, какие существуют способы задания движения точки и для чего они применяются.
- •21. Изложите определение, уравнение, формулы и графики равномерного движения точки.
- •22. Изложите определение, уравнение, формулы и графики равнопеременного движения точки.
- •23. Дайте определение поступательного движения твердого тела. Изложите его характеристики.
- •24. Дайте определение вращательного движения твердого тела. Изложите его параметры.
- •25. Изложите определение, уравнение и формулы равномерного вращения твердого тела.
- •26. Изложите определение, уравнение и формулы равнопеременного вращения твердого тела.
- •27. Запишите и объясните зависимости между угловыми и линейными параметрами вращающегося тела.
- •28. Объясните, чем характеризуется сложное движение материальной точки и как определяется его скорость.
- •29. Объясните, чем характеризуется сложное движение твердого тела. Дайте определение понятию «мгновенный центр скоростей».
- •30. Назовите объект и предмет, которые изучает динамика. Дайте определение основным понятиям динамики. Перечислите аксиомы динамики.
- •31. Объясните сущность сил инерции. Объясните, как определяются силы инерции при прямолинейном и криволинейном движениях.
- •32. Сформулируйте сущность принципа Даламбера и метода кинетостатики. Назовите его применение.
- •33. Объясните, как определяется работа постоянной силы. Назовите единицы измерения работы.
- •34. Объясните, как определяется работа сил тяжести. Дайте определение понятию «кпд».
- •35. Объясните, что такое мощность. Назовите единицы измерения мощности.
- •36. Объясните, как определяется работа и мощность при вращательном движении.
- •37. Раскройте сущность понятий «трение скольжения», «коэффициент трения», «сила трения», «угол трения» и «конус трения».
- •38. Раскройте сущность понятий «трение качения». Перечислите основные параметры.
- •39. Дайте определение понятиям «количество движения» и «импульс силы». Сформулируйте теорему об изменении количества движения.
- •40. Дайте определение понятию «механическая энергия». Перечислите виды механической энергии. Сформулируйте теорему об изменении кинетической энергии.
- •41. Назовите объект и предмет, которые изучает сопротивление материалов. Перечислите основные задачи. Дайте определение понятиям «прочность», «жесткость» и «устойчивость».
- •42. Объясните, чем отличаются упругие и пластические деформации. Перечислите основные допущения сопротивления материалов.
- •43. Раскройте сущность и назначение метода сечений. Дайте определение понятию «напряжение», назовите его виды и единицы измерения.
- •44. Объясните, как определяется величина и знак продольной силы. Изложите порядок построения эпюры продольной силы.
- •45. Перечислите и объясните виды продольной и поперечной деформации. Сформулируйте закон Гука. Объясните, что характеризует коэффициент Пуассона.
- •46. Дайте определение и покажите зависимости между предельными, допускаемыми и расчетными напряжениями.
- •47. Объясните, как определяются напряжения при растяжении-сжатии? Изложите условие прочности и расчеты на прочность.
- •48. Объясните, как проводятся испытания материалов на растяжение-сжатие и какие механические характеристики при этом определяются.
- •49. Изложите порядок расчета и на срез и смятие заклепочных соединений.
- •50. Объясните, как проводятся расчеты на прочность сварных соединений.
- •51. Перечислите виды геометрических характеристик плоских сечений и дайте определение каждому из них.
- •52. Определите моменты инерции простых сечений.
- •53. Дайте определение понятию «момент инерции». Объясните, как определить расположение главных осей и главные центральные моменты инерции.
- •54. Объясните, чему равен крутящий момент. Изложите порядок построения эпюры крутящих моментов.
- •55. Изложите определение напряжений, условие прочности и расчеты на прочность при кручении.
- •56. Изложите, какие существуют расчеты на прочность и жесткость при кручении. Объясните, как они выполняются.
1. Изложите цель и задачи изучения предмета «Техническая механика». Опишите роль и значение механики в технике.
«Техническая механика» – одна из фундаментальных общепрофессиональных дисциплин профессионального цикла, на материале которой базируются многие специальные дисциплины, рассматривающие методы расчета сооружений и эксплуатации высотных зданий, мостов, тоннелей, плотин, трубопроводов, дорог и прочих сооружений.
Цель дисциплины – изучение общих законов движения и равновесия материальных тел и возникающих при этом взаимодействий между телами, теоретическая и практическая подготовка в области прикладной механики деформируемого твердого тела, развитие инженерного мышления, приобретение знаний, необходимых для изучения последующих дисциплин.
Задачи изучения – в итоге изучения курса студент должен знать основные понятия и законы механики и вытекающие из этих законов методы изучения равновесия и движения материальной точки, твердого тела и механической системы; а также уметь прилагать полученные знания для решения конкретных задач техники, самостоятельно строить и исследовать математические и механические модели технических систем, квалифицированно применяя при этом основные алгоритмы высшей математики и используя возможности современных компьютеров и информационных технологий.
Результатом изучения данной дисциплины является умение сформулировать задачи статики, кинематики точки и твердого тела, динамики точки, механической системы и твердого тела; вычислять кинематические и динамические характеристики движения точки и твердого тела, положение центра масс механической системы, осевые моменты инерции простейших тел; составлять уравнения равновесия, дифференциальные уравнения движения точки, механической системы и твердого тела.
Роль и значение механики в технике. Механика занимает одно из центральных мест среди наук, непосредственно обеспечивающих ускорение научно-технического процесса человечества. Ей принадлежит ведущая роль в разработке научной базы инженерного дела на основе использования широкого спектра методов физических исследований, математического и компьютерного анализа и моделирования. Выдающиеся достижения космической техники, авиации, гидротехники, машино- и приборостроения, строительной индустрии, судостроения опираются на глубокое понимание законов механики и точный расчет, основанный на данных экспериментов и теоретических исследований. Без знания механики невозможны расчеты технологических процессов в машиностроении, металлургии, производстве синтетических полимеров, легкой промышленности, при добыче полезных ископаемых, в пищевой промышленности, в сельскохозяйственном производстве. Механика сопровождает все этапы технологических процессов в строительстве, без знаний в области механики невозможно обойтись в сфере проектирования, создания и эксплуатации любых транспортных средств.
2. Объясните основные понятия и аксиомы статики.
Статика – раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.
Сила (F) – мера механического взаимодействия тел. Характеризуется модулем, направлением и точкой приложения, то есть является векторной величиной. Единица измерения силы в Международной системе единиц (СИ) – ньютон, килоньютон (Н, кН).
Материальное тело – некоторое количество материи (вещества), заполняющего какой-то объем в пространстве.
Материальная точка – материальное тело, размерами которого можно пренебречь.
Система материальных точек (механическая система) – такая совокупность материальных точек, в которой положение и движение каждой зависят от положения и движения других точек этой системы.
Система сил – группа нескольких сил, приложенных к телу в тех или иных его точках. Внешними называются силы, действующие на материальные точки (тела) со стороны материальных точек (тел), не принадлежащих этой системе. Внутренними называются силы взаимодействия между материальными точками (телами) рассматриваемой системы. Активные силы принято называть нагрузками (изображают в виде сосредоточенных сил, моментов, распределенных по какому-либо закону). Нагрузками являются и усилия, передающиеся с одного элемента конструкции на другой, и зависят они от деформации элементов. Нагрузки, распределенные по некоторой поверхности, характеризуются давлением (1 Па = 1 кН/м2, МПа).
Аксиомы статики. В основе статики лежат аксиомы – экспериментально установленные законы, справедливость которых проверена практической деятельностью человека.
1) Если на свободное абсолютно твердое тело действуют две силы, то тело может находится в равновесии только тогда, когда эти силы равны по модулю и направлены вдоль одной прямой в противоположные стороны: F1 = –F2. Система сил F1 и F2 называется уравновешивающейся, или эквивалентной нулю: F1 + F2 = 0.
2) Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или от нее отнять уравновешенную систему сил. Следствие: не нарушая состояния твердого тела, силу можно переносить по линии ее действия в любую точку тела, т. е. сила – вектор скользящий.
3) Две силы, приложенные к телу в одной точке, можно заменить одной, приложенной в той же точке, которая является диагональю параллелограмма, построенного на этих силах как на сторонах: R = F1 + F2. Сила R, которая эквивалентна данной системе сил F1 и F2 называется равнодействующей.
4) Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены по одной прямой в противоположные стороны: FA = –FB. Силы FA и FB не образуют уравновешенную систему сил, так как они приложены к разным телам.
5) Равновесие деформируемого тела не нарушится, если тело считать отвердевшим (абсолютно твердым). Условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но не достаточными для соответствующего деформируемого тела.
