- •1. Солнечная энергия
- •Сравнительная характеристика кпд солнечных фотоэлементов
- •2. Энергия ветра
- •3. Геотермальная энергия
- •Виды тепловых насосов. Тепловые насосы бывают двух основных типов – с закрытым и открытым контуром.
- •Геотермальные электростанции, работающие на сухом пару
- •Геотермальные электростанции на парогидротермах
- •Геотермальные электростанции с бинарным циклом производства электроэнергии
- •4. Энергия малых водных потоков
- •5. Энергия биомассы
- •Основные параметры древесных топливных гранул (пеллет)
- •Сравнительная характеристика видов топлива
- •Нормы качества для древесных топливных гранул
- •6. Аккумуляция тепловой энергии
- •1.6. Аккумуляторы емкостного типа
- •Теплофизические свойства жидких там
- •Основные свойства твердых там
- •Аккумуляторы фазового перехода вещества
- •Основные свойства там на основе кристаллогидратов
- •Основные свойства плавящихся органических там
- •Аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фотохимических реакциях
- •Характеристики некоторых газофазовых и газожидкостных термохимических систем
- •Аккумуляция электрической энергии
- •1.7. Механические системы аккумулирования энергии
- •2.7. Электрические системы аккумулирования энергии
- •3.8. Химические системы аккумулирования энергии
Сравнительная характеристика кпд солнечных фотоэлементов
Тип фотоэлемента |
КПД |
Монокристаллический |
14-18 % |
Поликристаллический |
13-17 % |
Тонкопленочный (аморфный) |
6-11 % |
По состоянию на 2011 г. 85% производимых в мире солнечных модулей изготавливается из кристаллического кремния и только 15% – на основе тонких пленок.
Подобная ситуация на рынке гелиоэнергетики вызвана критическим недостатком аморфных фотоэлементов – деградацией (Staebler–Wronski effect (SWE)), эффект которой заключается в стремительном снижении их мощности в первые месяцы эксплуатации, достигающий 30-40%. На этом процесс деградации не останавливается, но протекает уже с меньшими темпами, что тем не менее за 8-9 лет приводит модуль в полную негодность. Кроме того, данные солнечные панели имеют больший размер (на 30-40 %) при существенно меньшей мощности.
Несмотря на это, по оценкам специалистов, тонкопленочная технология очень перспективна, так как модули на основе аморфного кремния имеют более низкую стоимость процесса производства (в пределах 25 %), отличные характеристики преобразования в условиях низкой освещенности, а также меньше подвержены перегреву, из-за которого другие модули теряют 15-20% мощности. Вследствие этого они генерируют на 10% больше энергии в год, чем кристаллические, без учета деградации. Однако на текущий момент солнечные модули данного типа не отвечают одному из наиболее важных критериев - долговечность, что делает их покупку весьма сомнительным вложением средств [15].
В настоящее время на стадии разработки находится принципиально новая технология тонкопленочных модулей, что может значительно способствовать их массовому распространению за счет удешевления и увеличения энергоемкости. Ее идея заключается в создании пленочного композитного материала, в состав которого входят металлические наночастицы, придающие ему свойства фотоэлемента.
Такие солнечные батареи работают на иных принципах, нежели обычные кремниевые фотоэлементы. Это и позволяет добиться почти полной прозрачности панелей, которые можно использовать для покрытия оконных стекол. Конечно, некоторое количество света они будут поглощать в любом случае, чтобы вырабатывать энергию, но затемнение будет практически незаметным для глаза. Покрывать этой пленкой можно и прочие поверхности зданий, причем здесь она может быть и более темной, поглощая и превращая в электроэнергию большее количество солнечного излучения. Принципиально действенность новой технологии уже продемонстрирована. Следующая задача ученых и разработчиков – доработать ее, чтобы достичь эффективности как минимум 20%, которая обеспечит экономическую целесообразность ее использования. Коммерческая версия инновации будет представлена не ранее 2016 года [16].
Наиболее надежной и проверенной временем является технология кристаллического кремния, и хотя данные фотоэлементы также подвержены эффекту деградации, составляющей в среднем 20 % за 20-25 лет, она обеспечивает стабильную и длительную работу солнечного модуля. Почти 100% сетевых солнечных электростанций введенных в эксплуатацию в 2011 году во всем мире, построены на основе именно кристаллических солнечных модулей [15].
В настоящее время во многих исследовательских
центрах ведутся работы, направленные
на повышение КПД ФЭП за счет создания
слоевых (каскадных) структур, обеспечивающих
более полное преобразование энергии
солнечного излучения во всем его спектре,
а также на снижение стоимости
полупроводниковых материалов и ФЭП в
целом. Ожидается, что в обозримом будущем
КПД промышленных ФЭП может быть увеличен
до 30—35% (в лабораторных условиях
достигнуты рекордные КПД на уровне
40%), а их стоимость в модулях уже в
ближайшие годы может стать менее 1
долл./кВт
[7].
Необходимо отметить, что стоимость
электричества, получаемого от
фотоэлектрических систем электроснабжения,
проявляет четкие тенденции к снижению.
Так если в конце 80-х годов прошлого века,
на заре развития отрасли, солнечнее
батареи промышленного образца генерировали
электричество стоимостью 2 долл. за
,
то на сегодняшний день этот показатель
снизился до отметки в 0,3 долл., а к 2020
году (по мнению Европейской Ассоциации
Фотовольтаики (EPIA)) можно
рассчитывать на трехкратное снижение
стоимости вырабатываемой электроэнергии
– для крупных фотоэлектрических
энергосистем промышленного назначения,
и на двукратное снижение – для бытовых
«солнечных» установок [17].
Солнечное холодоснабжение
Преобразование энергии солнечного излучения в холод осуществляется посредством применения пассивных и активных систем, принципиальные конструктивные различия и особенности которых аналогичны соответствующим системам теплоснабжения, представленным ранее. Поэтому перейдем сразу к классификации и рассмотрению систем активного холодоснабжения.
Существуют три основных метода активного охлаждения:
использование холодильных установок компрессорного типа;
использование холодильных установок абсорбционных типа;
охлаждение с использованием испарения.
Холодильные установки компрессорного типа
Холодильное устройство компрессорного типа называют "холодильной установкой, работающей по термодинамическому циклу Ренкина" либо "компрессорной холодильной машиной с использованием солнечного тепла". При использовании в качестве энергоисточника солнечного излучения компрессор работает на водяном паре. В этом случае, если в качестве хладагента использовать воду, необходим теплоприемник с фокусирующим коллектором, обеспечивающим высокотемпературный нагрев выше 220°С. Цикл работы компрессорной холодильной установки с использованием солнечной энергии представлен на Рис. 8.
Рис. 8. Цикл работы компрессорной холодильной установки с использованием солнечной энергии: 1 - вода, нагретая солнечным излучением (горячий источник); 2 - бойлер; 3 - насос питательной воды; 4 и 7 - охлаждающая вода; 5 и 6- конденсатор (превращение пара в воду); 8 - клапан расширителя; 9 - холодная вода (холодный источник); 10 - испаритель; 11 - компрессор; 12 – расширитель
В настоящее время широко распространены холодильные установки, работающие по циклу Ренкина, с использованием хладагента на основе фреонов, имеющих малую удельную теплоемкость и способных испаряться при низких температурах, создавая вместе с тем достаточно высокое давление.
Холодильные установки абсорбционного типа
В абсорбционной холодильной установке применяемая в качестве источника тепла нагретая до 80-90°С солнечным излучением вода подается в генератор.
Рис. 9. Цикл работы абсорбционной холодильной установки с использованием солнечной энергии: 1 - вода, нагретая солнечным излучением (горячий источник); 2 - генератор; 3 - насос для абсорбирующего раствора; 4 и 7 - охлаждающая вода; 5 - абсорбер; 6 - конденсатор; 8 - дроссельный клапан; 9 - холодная вода (холодный источник); 10 - испаритель
Обычно абсорбционная холодильная установка проектируется на более высокую температуру (120-150°С), но в результате технического усовершенствования, выполненного специально для гелиоустановок, стало возможным использование низкопотенциального тепла. Цикл работы абсорбционной холодильной установки с использованием солнечной энергии представлен на Рис. 9 [18].
Испарительное охлаждение
Эффективным способом охлаждения здания в условиях жаркого сухого климата является испарительное охлаждение воздуха перед его поступлением в помещение. В камере испарительного охлаждения (охлаждающей башне) испаряющаяся с панелей влага, поглощает тепло из сухого и теплого воздуха и он, охлаждаясь и становясь тяжелее, начинает опускаться, подсасывая в башню наружный воздух. Таким образом, создается постоянный нисходящий воздушный поток. Ветра при этом не требуется, но его наличие приведет к увеличению скорости нисходящего воздушного потока в башне.
Охлаждающей башне не требуются вентиляторы для подачи холодного воздуха. Необходим лишь маленький 12-вольтовый вентилятор для подачи воды к охлаждающим панелям. Существует несколько конструкций охлаждающих башен, но все они, в общем, работают на одном принципе (Рис.10).
Рис. 10. Конструкция охлаждающей башни:1 - 4 охлаждающие панели; 2 - цистерна с водой и поплавковой системой подачи воды; 3 - 12-вольтовый насос; 4 - трубопровод подачи воды; 5 - вентиляционный проем; 6 - воздух в трубе, нагреваясь под действием солнечного тепла, поднимается, создавая подсос снизу; 7 - солнечная труба
В районах с очень плохими ветровыми условиями одной охлаждающей башни может оказаться недостаточно и в дополнение к ней понадобится устройство солнечной трубы, которая также должна иметь эффективную теплоизоляцию. Нагревать ее можно не только солнечной радиацией, но и любыми другими источниками. Горячий воздух будет просто вытекать из верхней части трубы, подсасывая снизу воздух из помещений дома [19].
Экологические аспекты солнечной энергетики
Неблагоприятные воздействия солнечной энергетики на окружающую среду:
Отчуждение земельных площадей под солнечные электростанции (СЭС), их возможная деградация. Удельная землеемкость СЭС изменяется от 0,001 до 0,006 га/кВт с наиболее вероятными значениями 0,003-0,004 га/кВт. Это меньше, чем для ГЭС, но больше, чем для ТЭС и АЭС;
Большая материалоемкость СЭС. В районах развития гелиотехники должны возводиться крупные комплексы по производству бетона, стекла и стали.
Загрязнение атмосферного воздуха при производстве кремниевых, кадмиевых и арсенид-галлиевых фотоэлементов кремниевой пылью, кадмиевыми и арсенидными соединениями, опасными для здоровья людей;
Затемнение больших по площади земель солнечными концентраторами, приводящее к сильным изменениям почвенных условий, растительность и т.д.;
Нагрев воздуха при прохождении через него солнечного излучения сконцентрированного зеркальными отражателями, что ведет к изменению теплового баланса, влажности, направления ветра в районе расположения СЭС; в некоторых случаях возможны перегрев и возгорание систем;
Значительное загрязнение питьевой воды, обусловленное применением низкокипящих жидкостей и их неизбежными утечками во время длительной эксплуатации. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами;
Создание помех телевизионной и радиосвязи, изменение климата, опасность для живых организмов и человека, связанные с передачей энергии с космических СЭС на Землю (микроволновое излучение). В связи с этим необходимо использовать экологически чистый диапазон волн [20].
