- •1. Солнечная энергия
- •Сравнительная характеристика кпд солнечных фотоэлементов
- •2. Энергия ветра
- •3. Геотермальная энергия
- •Виды тепловых насосов. Тепловые насосы бывают двух основных типов – с закрытым и открытым контуром.
- •Геотермальные электростанции, работающие на сухом пару
- •Геотермальные электростанции на парогидротермах
- •Геотермальные электростанции с бинарным циклом производства электроэнергии
- •4. Энергия малых водных потоков
- •5. Энергия биомассы
- •Основные параметры древесных топливных гранул (пеллет)
- •Сравнительная характеристика видов топлива
- •Нормы качества для древесных топливных гранул
- •6. Аккумуляция тепловой энергии
- •1.6. Аккумуляторы емкостного типа
- •Теплофизические свойства жидких там
- •Основные свойства твердых там
- •Аккумуляторы фазового перехода вещества
- •Основные свойства там на основе кристаллогидратов
- •Основные свойства плавящихся органических там
- •Аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фотохимических реакциях
- •Характеристики некоторых газофазовых и газожидкостных термохимических систем
- •Аккумуляция электрической энергии
- •1.7. Механические системы аккумулирования энергии
- •2.7. Электрические системы аккумулирования энергии
- •3.8. Химические системы аккумулирования энергии
Основные свойства плавящихся органических там
ТАМ |
, К |
, кДж/кг |
Удельная теплоемкость,
|
Плотность, |
Коэффициент |
||
теплопроводности, |
вязкости,
|
||||||
|
|
||||||
Полиэтилен- гликоль |
293-298 |
146 |
2,26 |
− |
1100 |
0,16 |
11,5 |
Октадекан |
301 |
244 |
2,18 |
744 |
− |
0,15 |
3,9 |
Парафин 46-48 |
320 |
209 |
2,08 |
800 |
− |
0,34 |
3 |
Нафталин |
353 |
− |
− |
1170 |
− |
− |
0,8 |
Ацетамин |
355 |
− |
− |
1160 |
− |
− |
− |
При рабочих температурах от 500 до 1600 °C применяются, как правило, соединения и сплавы щелочных и щелочноземельных металлов, существенными недостатками которых принято считать низкий коэффициент теплопроводности, коррозионную активность, изменение объема при плавлении.
Перспективно использовать смеси и сплавы органических и неорганических веществ, позволяющие обеспечивать необходимые значения температур плавления и большие сроки службы.
Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Следовательно, необходимо подбирать как ТАМ, так и теплоносители по признакам, обеспечивающим работоспособность конструкций.
Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям:
кристаллизоваться отдельными кристаллами;
иметь большую разность плотностей твердой и жидкой фаз;
быть химически стабильными;
не образовывать эмульсий с теплоносителем.
Теплоносители подбираются по следующим признакам:
химическая стабильность в смеси с ТАМ;
большая разница плотностей по отношению к ТАМ;
малая способность к вспениванию;
и ряд других требований, вытекающих из особенностей конструкции [54,55].
Основные конструктивные исполнения тепловых аккумуляторов фазового перехода представлены на Рис. 27.
Рис.27. Основные типы тепловых аккумуляторов фазового перехода: а – капсульный; б – кожухотрубный; в, г – со скребковым удалением ТАМ; д – с ультразвуковым удалением ТАМ; е, ж – с прямым контактом и прокачкой ТАМ; з, и – с испарительно-конвективным переносом тепла; 1 – жидкий ТАМ; 2 – твердый ТАМ; 3 – поверхность теплообмена; 4 – корпус теплового аккумулятора; 5 – теплоноситель; 6 – граница раздела фаз; 7 – частицы твердого ТАМ; 8 – промежуточный теплообменник; 9 – паровое и жидкостное пространства для теплоносителя
