- •Питання 1: Матерія і рух, простір і час. Матеріальна єдність світу. Предмет і методи фізики
- •Питання 2:Зміст і структура фізики
- •Питання 3: Кінематика матеріальної точки. Завдання кінематики
- •Питання 4: Класичні уявлення про простір і час. Система відліку. Еталони довжини і часу. Матеріальна точка.
- •Питання 6: Радіус-вектор, вектори переміщення, швидкості і прискорення
- •Питання 7: Динаміка матеріальної точки. Завдання динаміки. Перший закон Ньютона, його наслідки. Інерціальні системи відліку.
- •Питання 8: Механічна сила. Сили в природі
- •Питання 9: Другий закон динаміки. Маса і її вимірювання
- •Питання 10: Робота, потужність, енергія. Збереження повної енергії матеріальної точки
- •Питання 11: Електростатика. Електричний заряд і поле. Властивості електричного заряду. Два види заряду. Дискретність заряду. Елементарний заряд. Взаємодія точкових заряджених тіл. Закон Кулона.
- •Питання 12: Рух зарядів в електричному полі, електричний струм. Закон Ома для ділянки кола
- •Питання 13: Сторонні сили. Електрорушійна сила. Закон Ома для неоднорідної ділянки і повного кола. Робота і потужність постійного струму.
- •Питання 14: Явище електромагнітної індукції. Закон електромагнітної індукції. Індуктивність. Енергія магнітного поля.
- •Питання 16: Електромагнітні коливання. Коливальний контур
- •Коливальний контур без джерела напруги[ред. • ред. Код]
- •Питання 17: Електромагнітна природа світла. Джерела і приймачі світла
- •Питання 18: Хвильова оптика. Інтерференція світла. Явища дифракції і дисперсії світла
- •Питання 19: Геометрична оптика як граничний випадок хвильової оптики. Закони відбивання і заломлення світла. Дзеркала і лінзи.
- •Питання 20: Спектри випромінювання і поглинання. Спектрометри. Спектральний аналіз
- •Питання 21: Ідеальний газ. Основні положення мкт ідеального газу
- •Питання 22: Тиск газу. Основне рівняння мкт ідеального газу. Температура. Вимірювання температури. Шкали температур.
- •Питання 23: Рівняння стану ідеального газу (Клапейрона-Менделєєва). Газові закони
- •Питання 25: Перший закон термодинаміки. Другий закон термодинаміки. Теорема Нернста. Недосяжність абсолютного нуля температур
- •Питання 26: Загальні властивості і структура рідини. Поверхневий шар рідини. Поверхневий натяг. Капілярні явища
- •Питання 27: Аморфні і кристалічні тіла. Дальній порядок в кристалах. Монокристали і полікристали
- •Класифікація кристалів за типом зв’язків.
- •Аморфні тіла
- •Питання 29: Фотоефект. Закони фотоефекту
- •Питання 30: Будова атома. Дослід Резерфорда. Постулати Бора
- •Постулати Бора
- •Питання 31: Будова ядра. Дефект маси. Енергія зв’язку атомного ядра
- •Питання 32: Радіоактивність. Закон радіоактивного розпаду
- •Питання 33: Рентгенівське випромінювання та його застосування
- •Отримання рентгенівського випромінювання
- •Питання 34: Квантові генератори (лазери) та їх застосування
- •Питання 35: Ядерні реакції. Поділ важких ядер. Ланцюгова реакція поділу ядер. Ядерна енергетика
- •Питання 36: Реакції термоядерного синтезу, умови їх здійснення. Керований термоядерний синтез.
Питання 14: Явище електромагнітної індукції. Закон електромагнітної індукції. Індуктивність. Енергія магнітного поля.
Відкриття Ерстеда та Ампера про існування магнітного поля навколо провідника зі струмом (1820 р.) сформували припущення, що електричні та магнітні явища досить суттєво пов’язані, що електричне поле можна одержати за рахунок магнітного.
Лише 1831 року перший успіх мав М.Фарадей, який зробив одне із фундаментальних фізичних відкриттів − він показав, що змінне в часі магнітне полесупроводжується змінним електричним струмом. Це явище названо електромагнітною індукцією.
Явище, відкрите Фарадеєм виявляється найпростішим дослідом: коли провідник MN(рис. 11.1) та магніт знаходяться у відносному спокої, чутливий гальванометр не фіксує наявності електричного струму; якщо ж провідник чи магніт приводяться у відносний рух − в колі відразу ж з’являється електричний струм. Цей струм існує доти, поки здійснюється відносний рух провідника та магніту. Напрямок струму залежить від напрямку переміщення провідника та напрямку вектора індукції магнітного поля.
Цей
струм названо
індукційним,
а причину його виникнення, на перший
погляд,
можна
пояснити дією силиЛоренца
на
рухомі електричні заряди. Під час руху
провідника разом із ним переміщуються
вільні електричні заряди (електрони) ,
на які діє
сила
Лоренца
під
дією якої електрони зміщуються до одного
з кінців провідника. Внаслідок того, що
другий кінець провідника при цьому
зарядиться позитивно.
Отже,
між кінцями провідника виникає різниця
потенціалів, що і є причиною руху носіїв
струму в зовнішньому електричному колі.
Явище виникнення індукційного струму ефективніше досліджувати з допомогою не провідника, а котушки незмінної форми із значною кількістю витків дроту, оскільки при цьому величина індукційного струму зростає пропорційно до кількості витків в котушці. Величина індукційного струму зростає також при збільшенні магнітного потоку, що пронизує котушку. Так, при заповненні частини простору феромагнетиком, ефект посилюється.
Здогадка Фарадея використати в якості джерела магнітного поля іншу котушку остаточно переконала його тому, що він дійсно відкрив нове явище природи, яке не можна пояснити дією сили Лоренца. Так, якщо намотати одну котушку на іншу та під’єднати: першу − до джерела струму через реостат, а другу − замкнути на гальванометр (рис. 11.2), то будь-яка зміна сили струму в колі першої котушки − чи шляхом замикання−розмикання ключа, чи з допомогою реостата, − призведе до виникнення змінного магнітного поля навколо цієї котушки, яке буде пронизувати замкнену на гальванометр другу котушку. Внаслідок цього в колі другої котушки виникатиме електричний струм, причому його напрямок залежатиме, як від напрямку зміни сили струму, так і від того замикається чи розмикається електричне коло. Отже, в даному випадку не рухається ні провідник, ні магнітне поле, але індукційний струм виникає.
Оскільки магнітне поле не діє на нерухомі заряди в провіднику, то можна припустити, що під час зміни індукції магнітного поля, яке пронизує контур замкнутого провідника, навколо цього змінного поля виникає індукційне електричне поле, яке й діє на нерухомі електричні заряди і викликає індукційний струм в замкнутому провіднику. Важливо зрозуміти, що виникнення індукційного електричного поля навколо змінного магнітного зовсім не пов’язано з наявністю в цій точці простору провідника. Наявність провідника лише дає змогу виявити це поле за збудженим ним електричним струмом.
Таким чином можна узагальнити: явище електромагнітної індукції полягає в тому, що змінне магнітне поле супроводжується виникненням у навколишньому просторі індукційного електричного поля, яке в свою чергу збуджує в замкнутому провіднику індукційний струм.
Якщо індукційне електричне поле створює в замкнутому контурі ЕРС, то це значить, що циркуляція напруженості цього поля, по замкнутому контуру відмінна від нуля, причому вона визначається швидкістю зміни магнітного потоку, що пронизує поверхню, обмежену контуром, тобто
Це і є математичний запис закону електромагнітної індукції (інтегральна форма − належить Маквеллу) та формулюється: будь-якій зміні в часі магнітного поля в точках простору, де є така зміна, збуджується вихрове електричне поле, циркуляція вектора напруженості якого по довільному замкненому контуру L дорівнює швидкості зміни потоку магнітної індукції через довільну поверхню S, яка спирається на контур із струмом.
Питання 15: Змінний струм. Добування змінного струму. Закони Ома для змінного струму.
Підставивши
вирази
(5)
та
(6)
у
(3),
одержимо
звідки
.
Це
рівняння є записом
закону
Ома
для
кіл змінного струму стосовно їхніх
амплітудних значень. Зрозуміло, що воно
буде справедливим і для ефективних
значень сили та струму:
.
Д
ля
кіл змінного струму можливий випадок,
коли
,
а це значить, що
UL=UC.
Оскільки ці напруги перебувають у
протифазах, то вони компенсують одна
другу. Такі умови називають
резонансом
напруг.
Резонанс можна досягти або при ω=const,
змінюючи
С
та
L,
або
ж при сталих
С
та
L
підбирають
ω, яка називається
резонансною.
Як видно −
.
Особливості резонансу напруг наступні:
повний опір кола мінімальний, Z=R;
амплітуда струму − максимальна
;амплітуда значень прикладеної напруги дорівнює амплітуді на активному опорі:
напруга і струм перебувають в однакових фазах (φ=0);
потужність джерела передається лише активному опору, отже корисна потужність − максимальна.
|
|
|
|
Резонанс струмів одержують при паралельному з’єднанні індуктивності та ємності (рис.12.6). За першим законом Кірхгофарезультуючий струм в якийсь момент часу І = ІL+IC. Якщо добрати умову, щоб , то струми ІL та IC будуть знаходитись у профазі, хоча будуть рівними за величиною. Незважаючи на те, що стуми ІL та IC. можуть бути достатньо великими, струм в головному колі стане рівним нулеві, а значить опір кола стане максимальним.
