- •Оглавление
- •Глава 1. Биофизические аспекты взаимодействия эми с биообъектами. Основные понятия………………………………………..5
- •Глава 2. Физические основы работы лазера……………………………….22
- •Глава 3. Биофизические аспекты взаимодействия эми с биообъектами: примеры применения в практической медицине……55
- •Введение
- •Глава 1. Биофизические аспекты взаимодействия эми с биобъектами. Основные понятия
- •Основные понятия об эми
- •Основы взаимодействия электромагнитныхизлучений с биологическими объектами
- •Взаимодействие квч-излучения с биообъектами
- •Взаимодейсвтие лазерного излучения с биообъектами
- •Глава 2. Физические основы работы лазера (По материалам [4])
- •2.1. Конструкция лазера Процесс лазерного излучения
- •Лазерные активные среды
- •Механизм возбуждения
- •Оптическая накачка
- •2.2. Лазерное излучение
- •2.3. Механизмы воздействия лазерного излучения на биоткань
- •Оптические свойства ткани
- •Термические свойства ткани
- •2.4. Биостимуляция
- •2.5. Фотодинамическая терапия
- •Фотодинамическая терапия рака
- •2.6. «Тепловые» и «нетепловые» воздействия на ткань
- •Оптическая доставка энергии
- •2.7. Нелинейные процессы
- •Фотоабляция
- •2.8. Лазерная система на основе Nd:yag с регулировкой дозы воздействия для рассечения ткани
- •Глава 3. Биофизические аспекты взаимодействия эми с биообъектами: примеры применения в практической медицине
- •Перспективы применения низкоинтенсивного лазерного излучения и гамма-излучения для моделирования ускоренного старения органов и тканей на примере тимуса
- •Механизмы взаимодействия нили с биологическими объектами
- •Структурно-функциональные изменения тимуса при старении
- •Использование γ-излучения в моделировании старения тимуса: достоинства и недостатки
- •Воздействие нили на тимус
- •Влияние низкоинтенсивного лазерного излучения на сердечно-сосудистую систему
- •3.2.1. Влияние He-Ne-лазерного излучения низкой мощности на адренореактивностьпиальных артериальных сосудов и деформируемость эритроцитов у мышей
- •Методология исследования
- •Результаты исследования
- •3.2.2. Влияние низкоинтенсивного лазерного излучения красного спектра на некоторые свойства эритроцитов крыс Вистар
- •Методология эксперимента
- •Результаты исследования
- •3.3.1. Применение электромагнитного излучения миллиметрового диапазона для лечения сердечно-сосудистой патологии
- •3.3.2. Биологические эффекты электромагнитного излучения миллиметрового диапазона
- •Молекулярные механизмы взаимодействия электромагнитного излучения миллиметрового диапазона с эндотелием сосудов: пример экспериментального исследования Методология исследования
- •Результаты исследования Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию эндотелиальнойNo-синтазы в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию эндотелина - 1 в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию ангиотензина - 2 в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию вазопрессина в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию тромбомодулина (сd141) в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию фактор роста эндотелия сосудов vegf в клетках эндотелия сосудов при старении
- •Влияние электромагнитного излучениямиллиметрового диапазона на экспрессию молекулы адгезии icam в клетках эндотелия сосудов при старении
- •Заключение
- •3.3.4.Перспективы применения квч-терапии у пациентов пожилого и старческого возраста с хроническим пародонтитом
- •Результаты исследования
- •Заключение
- •Библиографический список
- •Власова Ольга Леонардовна, Линькова Наталья Сергеевна
- •195251, Санкт-Петербург, Политехническая ул., 29.
Лазерные активные среды
В качестве лазерной среды могут применяться все материалы, у которых можно обеспечить инверсию населенности. Это возможно у следующих материалов:
а) свободные атомы, ионы, молекулы, ионы молекул в газах или парах;
б) молекулы красителей, растворенные в жидкостях;
в) атомы, ионы, встроенные в твердое тело;
г) легированные полупроводники;
д) свободные электроны.
Количество сред, которые способны к генерации лазерного излучения, и количество лазерных переходов очень велико. В одном только элементе неоне наблюдается около 200 различных лазерных переходов. По виду лазерной активной среды различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В качестве курьеза следует отметить, что человеческое дыхание, состоящее из двуокиси углерода, азота и водяных паров, является подходящей активной средой для слабого СО2-лазера, а некоторые сорта джина генерировали уже лазерное излучение, поскольку они содержат достаточное количество хинина с голубой флуоресценцией.
Известны линии лазерной генерации от ультрафиолетовой области спектра (100 нм) до миллиметровых длин волн в дальнем ИК-диапазоне. Лазеры плавно переходят в мазеры. Интенсивно ведутся исследования в области лазеров в диапазоне рентгеновских волн (рис. 16).. Но практическое значение приобрели только два-три десятка типов лазера. Наиболее широкое медицинское применение сейчас нашли СО2-лазеры, лазеры на ионах аргона и криптона, Nd:YAG-лазеры непрерывного и импульсного режима, лазеры на красителях непрерывного и импульсного режима, He-Ne-лазеры и GaAs-лазеры. Эксимерные лазеры, Nd:YAG-лазеры с удвоение частоты, Er:YAG-лазеры и лазеры на парах металлов также все шире применяются в медицине.
Рис. 16. Типы лазеров, наиболее часто применяемые в медицине.
Кроме того, лазерные активные среды можно различать по тому, формируют ли они дискретные лазерные лини, т.е. только в очень узком определенном интервале длин волн, или излучают непрерывно в широкой области длин волн. Свободные атомы и ионы имеют из-за их четко определенных энергетических уровней дискретные лазерные линии. Многие твердотельные лазеры излучают также на дискретных линиях (рубиновые лазеры, Nd:YAG-лазеры). Были разработаны, однако, также твердотельные лазеры (лазеры на центрах окраски, лазеры на александрите, на алмазе), длины волн излучения у которых непрерывно могут изменяться в большой спектральной области. Это касается в особенности лазеров на красителях, в которых эта техника прогрессировала в наибольшей степени. Лазеры на полупроводниках ввиду зонной структуры энергетических уровней полупроводников также не имеют дискретных четких лазерных линий генерации.
Механизм возбуждения
Как уже было упомянуто, генерация лазерного излучения может быть достигнута, если имеется инверсия населенности двух энергетических уровней. Чтобы получить эту инверсию населенности, в лазерную среду должна быть введена энергия в соответствующей форме. Этого можно добиться различным образом, независимо от специфического лазерного процесса. Тем не менее, тот или иной метод возбуждения следует выбирать и оптимизировать специально для соответствующего типа лазера. Основные методы возбуждения – это возбуждение очень интенсивным светом, так называемая «оптическая накачка», и возбуждение электрическим газовым разрядом. В полупроводниковых лазерах возбуждение осуществляется непосредственно электрическим током. Для возбуждения могут быть использованы также химические реакции.
