Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.65 Mб
Скачать

24. Б ернулли теңдеуі.

Идеал сұйықтың қозғалысын (ағысын) сипаттайтын өрнекті 1738 жылы Д. Бернулли тұжырымдады. Бұл формуланы қорытып шығару үшін көлденең қималар әртүрлі түтікшедегі идеал сұйықтың қозғалысын қарастырайық. Түтікшенің ішінен және аудандармен шектелген сұйық массасын алып, оның қозғалысын бақылаймыз. Сол аудандардағы ағын жылдамдықтары мен қысымдары, және , болсын. Сұйықтық уақыт аралығында жол жүріп, -ден күйіне, ал қимада жол жүріп, күйіне келеді. және ағындарының арасындағы сұйық көлемі үздіксіздік теңдеуіне сәйкес және аралығындағы орналасқан сұйықтың көлеміне тең болады. Түтік белгілі-бір еңістікке ие және олардың және қималарының центрі берілген горизонтал деңгейден және биіктікте тұр.

және екенін ескеріп, бастапқыда және қималарының арасында орналасқан сұйық массасының толық энергиясының өзгерісін келесі түрде жазуға болады.

Бұл өзгеріс, энергияның сақталу заңы бойынша сыртқы күштердің жұмысына негізделген. Берілген жағдайда сәйкес және қималарға әсер ететін қысым күштері және , мұндағы және - сәйкес қысымдар. күш пен орын ауыстырудың бағыттары бірдей, сондықтан күш оң жұмыс жасайды және -ға тең.

қысым күші және орын ауыстырудың бағыттары қарама-қарсы. Олай болса, күш жұмысы теріс . Сонымен, сыртқы күш жұмыс жасайды.

Энергияның сақталу заңы бойынша қималар энергияларының айырымы сұйықты қозғалысқа келтіру үшін істелінетін жұмыстардың айырымына тең болады. Сыртқы күштердің қосынды жұмысы - ға тең.

уақыт ішінде және қималардан ағып өтетін сұйық көлемі және үздіксіз теоремасы бойынша өзара тең . Сыртқы күштердің толық жұмысы

Кинетикалық энергияның өзгерісі жасалынған жұмысқа тең ,

теңдігінен және сұйықтың сығылмайтын шартынан

,

мұндағы - сұйық тығыздығы, сондықтан өрнек келесі түрде жазылады.

және қима аудандары ойша алынғандықтан соңғы өрнекті кез-келген түтік қималары үшін былай жазуға болады:

  • Бернулли теңдеуі деп аталады.

Сұйық ағынындағы қысым. Бернулли теңдеуіндегі: - динамикалық, - гидростатикалық, - статикалық (сыртқы) қысым деп аталады, ал олардың қосындысы толық қысым деп аталады. Демек, идеал сұйықтың стационарлы (қалыптасқан) ағысы кезінде түтік ағынының кез-келген қимасындағы толық қысым тұрақты шама.

25.Сұйықтың тұтқырлығы.Стокс заңы.

Тұтқырлық - сұйықтар мен газдардың негізгі қасиеттерінің бірі. Мысалы, машиналарды майлау үшін жанармайды алдын ала тұтқырлығына қарап таңдап алады. Сұйық тұтқырлығының температураға байланыстылығын өте күшті болады. Себебі сұйықтың температурасы жоғарылап кризистік температураға жеткенде (мысалы, суды алсақ ол 1000с-та қайнап буға айналады) басқа фазаға өтеді. Әсіресе майлар тұтқырлығының тәуелділігі күшті , мысалы, температурасы 180 С-тан 400 С-қа дейін көтерілгенде кастор майының тұтқырлығы төрт еседей кемиді.Барлық нақты сұйықтардың бір қабаты екінші қабатымен салыстырғанда орын ауыстырса, онда азды-көпті үйкеліс күші пайда болады. Шапшаңырақ қозғалатын қабат тарапынан жай қозғалатын қабатқа үдетуші күш әсер етеді. Керісінше, жай қозғалатын қабат тарапынан шапшаң қозғалатын қабатқа бөгеуші күш әсер етеді. Бұл күштер ішкі үйкеліс күштері деп аталады, олар қабаттардың бетіне жүргізілген жанама бойымен бағытталады. Ішкі үйкеліс күшінің шамасы сұйық ағысының v жылдамдығы бір қабаттан екінші қабатқа көшкенде қаншалықты шапшаң өзгеретіндігіне тәуелді және қарастырылып отырған сұйық қабаты бетінің S ауданы неғұрлым үлкен болса, соғұрлым зор болады. Мысалы, бірінен-бірі Δh қашықтықтағы сұйықтың екі қабаты v1 және v2 жылдамдықпен ақсын (v1- v2=Δv) делік. Қабаттардың Δh арақашықтығын өлшегенде бағыт сол қабаттардың ағыс жылдамдығына перпендикуляр болсын. Сонда Δv/Δh шамасы бір қабаттан екінші қабатқа көшкенде жылдамдықтың қаншалықты шапшаң өзгеретіндігін көрсетеді, оны жылдамдық градиенті деп атайды. Ньютон алғаш рет сұйықтың екі қабатының арасындағы үйкеліс күші жылдамдықтар айырымы мен жанасып тұрған сұйық қабаттары бетінің ауданына тура пропорционал және сол қабаттардың ара қашықтығына кері пропорционал екендігін дәлелдеді.

мұндағы η-пропорционал коэффициент, яғни сұйықтың тұтқырлық коэффициенті деп аталады.

Тұтқырлық коэффициенті неғұрлым үлкен болған сайын сұйықтың идеал сұйықтан айырмашылығы мен үйкеліс күші соғұрлым үлкен болады. Егер екі сұйық қабаты шексіз жақын болса, онда

Сұйық тұтқырлығының әсерінен болатын қозғалыс кезіндегі жанама кернеулігі мынадай:

сұйықтың тұтқырлық коэффициенті:

Тұтқырлық коэффициенттің өлшемділігі: η=ML-1T-1

Тұтқырлық динамикалық коэффициенті -пен өлшенеді, яғни жылдамдық градиенті - 1 . Бетінің ауданы 1 м2 сұйық қабаттарының әсерлесу кезіндегі тұтқырлық күші 1 Н болады. Әдетте η коэффициентін тұтқырлықтың абсолюттік коэффициенті деп атайды. Ал осы коэффициенттің берілген сұйықтың тығыздығына (ρ) қатынасы тұтқырлықтың кинетикалық коэффициенті делінеді, ол

Бұл тұтқырлық коэффициентіне кері шама, яғни 1/η - аққыштық коэффициенті деп аталады.

Тұтқырлықтың әсері ағынның қозғалмайтын денемен өзара әсерлесуі кезінде де байқалады.Тұтқырлығы сұйық ішіндегі радиусы ,жылдамдығы шар қозғалысына жасалатын кедергі күші мынаған тең:

,

Бұл өрнек Стокс теңдеуі деп аталады. Стокс өрнегі лабораториялық практикум сабағында сұйықтардың тұтқырлық коэффициентін анықтау үшін қолданылады.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]