- •Оглавление
- •Предисловие
- •Введение
- •1 Общие сведения об электроприводе
- •1.1 Понятие об электроприводе
- •1.2 Приведение моментов и сил сопротивления, инерционных масс и моментов инерции
- •1.3 Механические характеристики электродвигателей и производственных механизмов
- •1.4 Уравнение движения электропривода. Статическая устойчивость электропривода
- •1.5 Диапазон регулирования скорости. Статические ошибки
- •2 Характеристики двигателей постоянного тока (дпт) независимого возбуждения (нв)
- •2.1 Электромеханические и механические характеристики дпт нв
- •2.2 Регулирование угловой скорости дпт нв введением добавочных сопротивлений в цепь якоря
- •2.3 Регулирование угловой скорости дпт нв изменением напряжения на якоре
- •2.4 Регулирование угловой скорости дпт изменением магнитного потока
- •2.5 Тормозные режимы дпт нв
- •3. Автоматическое управление угловой скоростью и током якоря дпт нв в замкнутых системах электропривода
- •3.1 Регулирование угловой скорости в системе уп-дпт нв с отрицательной обратной связью по скорости и отсечкой по току якоря
- •3.2 Уравнение статики системы уп-дпт нв с отрицательной обратной связью по угловой скорости
- •3.3 Регулирование угловой скорости в системе уп-дпт нв с отрицательной обратной вязью по напряжению
- •3.4 Регуляторы в системах эп
- •3.5 Регулирование угловой скорости в системе генератор-двигатель (г-д)с обратной связью по скорости и токовой отсечкой
- •3.6 Регулирование угловой скорости в системе управляемый выпрямитель – двигатель постоянного тока независимого возбуждения (ув - дпт)
- •3.6.1 Однофазный однополупериодный ув. Фазовый способ регулирования выпрямленного напряжения
- •3.6.2 Однофазная схема ув с нулевым диодом
- •3.6.3 Однофазная двухполупериодная схема ув с нулевым выводом
- •3.6.4 Трехфазные схемы ув
- •3.6.5 Реверсивные электроприводы с ув
- •3.6.6 Системы подчиненного регулирования тока якоря и угловой скорости дпт нв
- •4. Механические характеристики и способы регулирования скорости двигателей постоянного тока последовательного и смешанного возбуждения
- •Заключение
- •Вопросы для самопроверки
- •Тема 1. Общие сведения об электроприводе
- •Тема 2. Характеристики двигателей постоянного тока независимого возбуждения (дпт нв)
- •Тема 3. Автоматическое управление угловой скоростью и током якоря дпт нв в замкнутых системах электропривода
- •Тема 4. Механические характеристики и регулирование скорости дпт последовательного и смешанного возбуждения
- •Библиографический список
3.6.5 Реверсивные электроприводы с ув
Изменить направления вращения ДПТ НВ (осуществить реверс двигателя) можно за счет изменения полярности напряжения или на обмотке возбуждения, или на якоре двигателя.
Первый способ, несмотря на его кажущуюся привлекательность – малую мощность в цепи возбуждения, используется редко. Это связано с тем, что при изменении полярности напряжения на обмотке возбуждения ток в ней снижается до нуля, а затем меняет свой знак. При этом момент двигателя, пропорциональный магнитному потоку обмотки возбуждения, также снижается, достигает нулевого значения, а затем меняет свой знак. Снижение момента затягивает процесс реверса.
В современных быстродействующих приводах реверс осуществляют изменением полярности напряжения на якоре. Такие приводы содержат два комплекта управляемых преобразователей (см. рис. 3.30): комплект, условно обозначенный «Вперед» – «В», и комплект «Назад» – «Н». При разделенном управлении в каждый момент времени работают вентили только одного комплекта.
Предположим, что в исходном состоянии работает комплект «В». Полярность напряжения преобразователя и направления ЭДС двигателя E и тока Iя якоря показаны на рис. 3.30.
Рис. 3.30
Если же включен комплект «Н», то полярность напряжения на якоре будет противоположной и двигатель будет вращаться в противоположную сторону.
В реверсивных приводах для снижения скорости двигателя, а также для его реверса реализуется инверторный режим работы выпрямителя. Поясним сказанное.
Предположим, что в исходном состоянии работает комплект «В» и частоту вращения двигателя необходимо уменьшить. Для этого уменьшают величину задающего сигнала в системе ЭП. В результате напряжение на входе комплекта «В» начинает резко снижаться и соответственно уменьшается ток Iя. В некоторый момент он становится равным нулю. После этого система управления УВ выдает команду на включение вентилей комплекта «Н». Причем комплект «Н» переводится в инверторный режим (полярность на его выходе для инверторного режима показана в окружностях). При этом ток якоря меняет знак и протекает из цепи постоянного тока в цепь переменного тока. Величина ЭДС комплекта «Н» устанавливается такой, чтобы ток якоря
не превышал допустимого тока двигателя (тока отсечки). Так организуется режим генераторного торможения двигателя с отдачей энергии в сеть переменного тока (сравните с аналогичным режимом в системе Г-Д).
Следует подчеркнуть, что включение комплекта «Н» в выпрямительном режиме в рассматриваемой ситуации недопустимо. Действительно, при таком включении ЭДС двигателя будет действовать согласно с напряжением УВ и ток якоря
будет недопустимо большим.
При работе же комплекта «Н» в инверторном режиме напряжение на выходе УВ ограничивает ток якоря.
При подходе двигателя к заданной пониженной скорости ток якоря уменьшается, комплект «Н» отключается и вновь вступает в работу комплект «В».
Аналогично протекает процесс реверса двигателя. Только в этом случае комплект «Н» остается постоянно включенным, угол a постепенно изменяется в сторону уменьшения. При <90о комплект «Н» переходит в выпрямительный режим, полярность напряжения на якоре двигателя меняется и двигатель начинает вращаться в противоположную сторону.
Управление комплектами «В» и «Н» осуществляется автоматически соответствующими блоками тиристорного привода.
