
- •1. Введение. Методы проецирования 4
- •Центральное проецирование
- •Параллельное проецирование
- •Прямоугольное (ортогональное) проецирование
- •Ортогональные проекции
- •Аксонометрические проекции
- •Коэффициенты искажения
- •Виды аксонометрических проекций
- •Стандартные аксонометрические проекции
- •Прямоугольная изометрическая проекция
- •Прямоугольная диметрическая проекция
- •Косоугольная фронтальная диметрическая проекция
- •Комплексный чертеж точки и прямой
- •Проекции прямых общего положения
- •Проекции проецирующих прямых
- •Деление отрезка прямой в данном отношении
- •Взаимное расположение двух прямых
- •Пересекающиеся прямые
- •Скрещивающиеся прямые
- •5.1. Проекции плоскостей общего положения
- •Проекции плоскостей уровня
- •Взаимное расположение двух плоскостей
- •Пересечение плоскостей общего положения
- •Взаимное расположение прямой и плоскости
- •Пересечение прямой линии с плоскостью
- •1 Этап (рис. 51, 52)
- •2 Этап (рис. 53, 54)
- •Условие видимости на чертеже
- •Перпендикулярность геометрических элементов
- •Прямая, перпендикулярная к плоскости. Теорема о проецировании прямого угла
- •Перпендикулярные плоскости
- •Перпендикулярные прямые
- •Построение теней
- •Тени от точки, линии и плоской фигуры
- •Тень, падающая от одной фигуры на другую
- •1. Метод обратных лучей
- •2. Метод следа светового луча (метод сечения лучевой плоскостью)
- •Тени геометрических тел
- •Тени многогранников
- •Тени цилиндра
- •Тени конуса
- •Тени пересекающихся многогранников (от здания)
- •Тени на фасадах зданий
- •Построение теней в нишах
- •Тени от выступов
- •Методы преобразования комплексного чертежа
- •Замена плоскостей проекций
- •Вращение вокруг оси, перпендикулярной плоскости проекций
- •Плоско-параллельное движение
- •Линии и поверхности
- •9.1. Линия
- •9.2. Поверхность
- •Поверхности
- •Поверхности линейчатые
- •Поверхности нелинейчатые
- •Поверхности параллельного переноса, вращения и винтовые
- •Поверхности вращения
- •Частные виды поверхностей вращения
- •Линейчатые поверхности вращения
- •Поверхности, образованные вращением окружности
- •10.1. Пересечение плоскости с поверхностью многогранника.
- •10.2. Пересечение плоскостью поверхности вращения.
- •10.3. Конические сечения.
- •Пересечение плоскости с поверхностью многогранника
- •Пересечение плоскостью поверхности вращения
- •Конические сечения
- •Вопросы для повторения
- •Пересечение прямой с поверхностью многогранника
- •Пересечение прямой с поверхностью вращения
- •Взаимное пересечение поверхностей
- •Пересечение многогранников
- •Способ секущих плоскостей
- •Способ концентрических сфер
- •Способ эксцентрических сфер
- •Особые случаи пересечения. Теорема Монжа
- •13.1. Общие положения
- •Аналитический способ
- •Способ нормального сечения
- •Способ раскатки
- •Приближенные построения разверток
- •Библиографически список
Коэффициенты искажения
Искажение отрезков осей координат при их проецировании на картинную плоскость характеризуется коэффициентами искажений по аксонометрическим осям.
Коэффициентом искажения называется отношение длины аксонометрической проекции отрезка оси к его натуральной длине.
Коэффициенты искажения по осям Ooxo,Ooyo иOozo соответственно будут равны:
;
;
.
Виды аксонометрических проекций
Принимая различное взаимное расположение натуральной системы координат и картинной плоскости и задавая разные направления проецирования, можно получить множество аксонометрических проекций, отличающихся друг от друга как направлением аксонометрических осей, так и величиной коэффициентов искажения по этим осям. В зависимости от соотношения коэффициентов искажения различают:
— ИЗОМЕТРИЧЕСКУЮ ПРОЕКЦИЮ (“изос” —равный), если коэффициенты искажения по всем трем осям равны меду собой:
Kx = Ky = Kz;
— ДИМЕТРИЧЕСКУЮ ПРОЕКЦИЮ, если коэффициенты искажения по двум любым осям равны между собой, а по третьей — отличаются от первых двух, например:
Kx Ky = Kz;
- ТРИМЕТРИЧЕСКУЮ ПРОЕКЦИЮ, если все три коэффициента искажения по осям различны:
Kx KyKz
В зависимости от угла, образуемого направлением проецирования sс картинной плоскостью, различают:
- прямоугольную аксонометрическую проекцию, еслиs;
- косоугольную
аксонометрическую проекцию, еслиs
.
Стандартные аксонометрические проекции
Из многообразия возможных видов аксонометрических проекций ГОСТ 2.317-(СТ СЭВ 1979-79) рекомендует для применения в чертежах всех отраслей промышленности и строительства ограниченное количество таких, которые меньше искажают изображение геометрических фигур и наиболее удобны при построении.
Из прямоугольных аксонометрических проекций к ним относятся изометрическая и диметрическая проекции, из косоугольных — фронтальная и горизонтальная изометрические проекции и фронтальная диметрическая проекция.
В чертежах машиностроительной промышленности более широко применяют прямоугольную изометрию и диметрию, а также косоугольную фронтальную диметрию.
Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по осям.
Прямоугольная изометрическая проекция
В прямоугольной изометрической проекции аксонометрические оси Ooxo,Ooyo иOozo расположены под углом 120о друг к другу, или, что удобно для вычерчивания, составляют угол 30о с горизонтальной линией (рис. 10).
Рис.
10
K2x = K2y = K2z = 2
Но в изометрии Kx =Ky=Kzи, следовательно, имеем:
3K2x = 2, откуда действительные коэффициенты искажения по осям равны
Kx = Ky = Kz = 0,82
Так как эти значения неудобны для подсчета размеров при построении, то стандарт рекомендует выполнять изометрическую проекцию без искажения по осям, что соответствует замене действительных коэффициентов искажения более удобными приведенными коэффициентами, равными единице:
Kx = Ky = Kz = 1
При этом изображение получается увеличенным в 1,22 раза (1/0,82 = 1,22).
Прямоугольную изометрию применяют, когда все три видимые на аксонометрическом изображении стороны предмета имеют примерно одинаковое количество особенностей, необходимых для характеристики изображаемого предмета.