- •Лекціі по дисципліні «дослідження операції»
- •1. Динамічне програмування
- •1.1. Поняття динамічного програмування
- •1.2 Принцип поетапної побудови оптимального керування.
- •1.3 Задача про мінімізацію витрат пального літаком при наборі висоти і швидкості.
- •1.4 Метод функціональних рівнянь.
- •1.5 Задача розподілу ресурсів
- •1.5 Задача заміни устаткування
- •1.3.3. Задача планування виробництва з урахуванням попиту, виробничих потужностей підприємства й обсягу його складських приміщень
- •1.4. Детерміновані процеси
- •1.5. Стохастичні задачі динамічного програмування
- •1.5.1. Задача розподілу ресурсів у стохастичному варіанті
- •1.5.2. Задача видобутку корисної копалини
- •Випадкові процеси. Марковські випадкові процеси
- •2.1. Марковські ланцюги, матриця переходів
- •2.2. Властивості стохастичних матриць
- •2.2.1. Властивості стохастичних матриць і деякі їх різновиди.
- •2.3. Ергодична властивість ланцюгів Маркова. Перехідний режим
- •2.4. Марковський процес із дискретними станами і безупинним часом. Рівняння Колмогорова для ймовірностей станів системи
- •2.4.1. Граничні ймовірності станів для н.М.Л. Теорема Маркова
- •3. Теорія масового обслуговування (т.М.О.) Задача і предмет т.М.О.
- •3.1. Класифікація систем масового обслуговування і їх основні характеристики.
- •3.2. С.М.О. Із відмовами. Рівняння Ерланга
- •3.2.1. Сталий режим обслуговування. Формули Ерланга
- •3.3. Система м.О. З очікуванням
- •3.4. Багатоканальні с.М.О. Із необмеженою чергою
- •4.Теорія ігор
- •4.1. Визначення гри, види моделей
- •4.2. Антагоністична гра у нормальній формі. Принцип гарантованого результату
- •4.3. Проблема рівноваги в грі, чисті і змішані стратегії
- •4.4. Теорія про мінімакс. Усталеність одержуваних рішень
- •4.5. Засоби пошуку оптимальних стратегій. Загальні підходи
- •4.6. Рішення ігор 22, 2n, m2. Графоаналітичний метод
- •4.7. Розв’язання ігор mn
- •5. Елементи теорії статистичних ігор. Поняття про статистичні ігри
- •5.1. Вибір оптимальної стратегії статиста
- •Список літератури
1.3.3. Задача планування виробництва з урахуванням попиту, виробничих потужностей підприємства й обсягу його складських приміщень
Постановка задачі
Підприємство випускає деякий виріб, щомісячний попит на який у t-місяці dt, виробничі потужності підприємства не дозволяють випускати більш at од. виробів на місяць, а складські приміщення розраховані на утримання до кінця t-го місяця в bt (t = 0, 1, ...) одиниць готової продукції.
Загальні витрати Ct (xt, it), пов'язані з виготовленням виробу, складаються з виробничих витрат C(xt) і витрат hit, пов'язаних із збереженням виробів, тобто Ct (xt, it) = C(xt) + hit, де xt - обсяг випуску виробу протягом місяця t, it - число виробів на складі на кінець місяця t, h -витрати, пов'язані зі збереженням на складі одиниці виробу.
Потрібно: розробити план випуску виробу на N місяців, при якому загальна сума витрат на виробництво і збереження запасів виробів буде мінімальною за умови повного і своєчасного задоволення попиту на цей виріб.
Рішення:
Складемо функціональні рівняння. Число етапів у задачі відповідає числу місяців, тобто дорівнює N.
Але за принципом Д.П. відлік етапів протилежний відліку місяців, тобто початку 1 етапу відповідає початок N-го місяця, початку 2-го етапу - початок N-1-го місяця і т.д., початку N-го етапу - початок 1-го місяця.
Тобто зв'язок між місяцем t і етапом k, буде t=N-k+1.
Якщо позначити jk - рівень запасу на складі на початок k-го етапу, xk(jk) - обсяг випуску виробів на k-ому етапі при рівні запасу на початок етапу jk, то рівень запасу на кінець k-го етапу стане ik = jk + xk(jk) - dk, де dk - попит на k-ому етапі.
Тоді значення цільової функції, дорівнює витратам на виробництво і збереження продукції за к - етапів при рівні запасів на початок k-го етапу в jk од.
fk(jk) = min {ck [xk(jk); jk + xk(jk) - dk] + fk-1(jk+xk(jk) - dk)} (1.21)
xk(jk)
Перекладемо функціональне рівняння для різних етапів у реальний час. При k=N.
fN(j1) = min {c1 [x1(j1); j1 + x1(j1) - d1] + fN-1(j1+x1(j1) - d1)} (1.22)
x1(j1)
При k =1
f1(jN) = min {cN [xN(jN); jN + xN(jN) - dN]} = СN [bN + dN - jN; bN]=
xN(jN)
= C(bN + dN - jN) + h . bN. (1.23)
За умовою задачі до кінця N-го місяця на складі може зберігатися bN = jN + xN(jN) - dN = xN(jN) = bN + dN - jN.
Конкретизуємо задачу: Нехай N=3; попит dt, обсяги випуску і збереження виробів at, bt, константи: dt = 3 + n1
at
= 5 + n1;
bt =
4 + n1;
h = 1 + n1;
C(xt)
=
K = n2; m = 2 + n1, де n1 - перша цифра номера, n2 - друга цифра номера за списком. Граничні умови b0 = b3 = 0, тобто для n1 = n2 = 0, k = 13 вирішимо задачу. У цьому випадку
-
Х
0
1
2
3
4
5
С(х)
0
15
17
19
21
23
Рішення почнемо з останнього місяця, тобто N=3
Тоді з (3) f1(j3) = C(3-j3) 0<3-j3<5 0<j3<4 0<j3<3
j3 |
0 |
1 |
2 |
3 |
|
f1(j3) |
19 |
17 |
15 |
0 |
|
С(2)
f2(j2) = min {[c(x2(j2)+ j2+ x2(j2)- d1]+f1(j2+x2(j2)- 3)}
x(j2)
0<j2+x2(j2)-3<4 3<x2+j2<7; 3-j2<x2<7-j2 0<j2<3
j2 = 0
3 <x2<5
j2 = 2 1 <x2<4, тому що f1(2+5-3) = f1(4) не існує.
j2 = 3 0 <x2<3, тому що f1(3+4-3) = f1(4) не існує.
Одержали
j2 |
0 |
1 |
2 |
3 |
|
f2(j2) |
38 |
26 |
24 |
22 |
|
Знайдемо f3(j1), де j1-наявність запасів на складі на початок 1-го місяця. За умовою j1 = 0. Тоді 0 <x1-3<4 = 3<x1<5.
Одержали, що min загальна сума витрат на виробництво і збереження виробів за три місяці дорівнює 47 г.о.
Знайдемо поетапний оптимальний план випуску і збереження виробу.
У 1-й місяць треба зробити 3 вироби, тобто x10 = 3, на складі до кінця 1-го місяця буде зберігатися 0 од., тобто i1 = 0 оптимальні початкові умови для початку двохетапного процесу, j2 = 0, тобто до початку процесу на складі 0 од. вир.
Тому оптимальний план на 2-й етап x20 = 3, тобто до початку 3-го місяця (1-го етапу) на складі немає запасів, тобто i30 = 0.
Тоді оптимальний випуск у 3-й місяць х30 = 3.
Висновок. Мінімальна сума витрат на виробництво і збереження продукції за три роки складає 47 г.о. при оптимальному плані випуску x10 = x20 = х30 = 3, при цьому склад порожній.
