Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
в 21 Тимофеева.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
43.07 Кб
Скачать

Способы решения нестандартных задач

  1. Найдите все целочисленные решения уравнения: х у = х + у.

  2. Папа купил арбуз Д=20см, толщина корки которого составила 1см. Какой % стоимости этого арбуза оказался истраченным на корку?

  3. Сколькими способами можно расставить на шахматной доске 8 ладей, чтобы они не били друг друга?

  4. Скорый поезд вышел из Москвы в С-Петербург и шел без остановки со скоростью 60 км/ч. Другой поезд вышел ему навстречу из С-Петербурга в Москву и тоже шел без остановок со скоростью 40 км/ч. На каком расстояний будут эти поезда друг от друга за час до встречи?

Отсюда понятно, что нестандартные задачи это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения. Такие задачи обычно включены в олимпиады.

Правил решения задач нестандартного характера нет. Но великими решателями задач найдено ряд общих рекомендаций-указаний, которыми можно пользоваться при решении. Эти советы-рекомендации назовем эвристическими правилами.

Чтобы решить нестандартную задачу, надо составить план (найти ход) решения - не обязательно точный и полный перечень действий. Большей частью это даже не ход, а только идея, а все остальное возникает в процессе решения. Иногда оказывается, что идея не верна, и надо все начинать снова. Процесс этот не поддается точному определению, но говорить при этом о каких-то общепринятых шагах можно, хотя поиску решения задач нельзя научить, можно лишь самому научиться.

Совет 1. Распознай вид данной задачи.

Как распознать вид задачи? Первым признаком является характер требования задачи. По этому признаку выделим 3 вида задач:

  1. Задачи на нахождение искомого (вычислительные задачи).

  2. Задачи на доказательство или объяснение (верность, ложность утверждения, объяснение какого - то фактора).

  3. Задачи на преобразование или построение (сконструировать что -то, изменить).

Совет 2. Сведи решение к уже решаемому.

Совет прост, но практически воспользоваться им не так-то просто. Ведь нет определенных правил для такого сведения незнакомых задач к уже решенным. Однако, если внимательно, вдумчиво анализировать задачи, вдумчиво решать каждую задачу, фиксируя в своей памяти все приемы, с помощью которых были найдены решения, какими методами, способами были решены задачи, то постепенно у вас вырабатывается умение в таком сведении. Не секрет ведь, что человек, который не умеет решать стандартные задачи, не решит и нестандартную.

Один из организаторов математических олимпиад в России, известный математик Тартаковский Владимир Абрамович сравнивал поиск решения задачи с поиском (задачей) поймать мышь, прячущуюся в куче камней. Есть два способа к этому:

  • отбрасывать постепенно по камню, пока не покажется мышь;

  • ходить вокруг горы и внимательно смотреть, не покажется ли хвостик; тогда хватать и вытягивать мышь из кучи.

Действительно, поиск решения напоминает поиск этой самой мыши. Живой пример такого поиска (задача о ракушках, найденных мальчиком). Ответ. Среди мальчиков нет такого, который не нашел ни одной ракушки. Так как мальчики нашли 5 ракушек, то могут быть такие варианты решения:

  1. 2 мальчика нашли по 1, один 3.

  2. 2 мальчика - по 2, третий - 1.

  3. Один нашел - 4, один - 1, один - ни одной.

Так как варианты 1 и 3 не соответствуют условию задачи, решением является только варианты 2: 2+2+1.

Поиск решения нестандартной задачи сводится к работе над задачами процессуальными, которые способствуют развитию умений сравнивать, анализировать, обобщать, прогнозировать, рассуждать, планировать. Задачи на нахождение и описание процесса достижения поставленной цели при определенных условиях называются процессуальными. Ответом задач является сам процесс получения того фактора, который выступает целью деятельности.

Ценность таких задач в том, что их решение способствует формированию операционного стиля мышления, необходимого для изучения математики и информатики.

Процессуальные задачи по виду деятельности учащихся при их решении можно разделить на эвристические и алгоритмические (пошаговые). Деление это чисто условное. Эвристические процессуальные задачи вовлекают детей в творческую поисковую или частично - поисковую деятельность, содействующих развитию интеллектуальных умений.

Способы решения таких задач:

  1. Составление таблиц, (переливание).

  2. Использование рисунка и рассуждения по рисунку

  3. Оформление схем или блок- схем. (Задача про козу, волка и капусту).

Такого рода задачи можно найти сколько угодно или составить. При решении учащиеся используют разные символы, образы, а ответы получают в результате рассуждений. Это и продвигает их в развитии.

Третий вид задач: преобразование или построение содержит задачу воссоздать образ изображенных предметов и различные мыслительные операции с этими образами. Очень распространены в этом виде задач со спичками (примеры на листах).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]