- •Материалы для подоговки к экзамену по дисциплине «основы программировния»
- •Тема №1 Основные понятия
- •Способы записи алгоритма
- •Тема №2 Переменные
- •Типы переменных
- •Типы с плавающей точкой
- •Переполнение переменных
- •Постфиксное обозначение типа
- •Шестнадцатеричный и восьмеричный формат
- •Экспоненциальная форма представления чисел
- •Объявление переменных
- •Начальное значение переменной
- •Область видимости переменной
- •Тема №3 Оператор присваивания
- •Ввод-вывод Форматированный вывод
- •Форматированный ввод
- •Непечатные символы
- •Тема №4 Ветвления и логические операторы
- •Оператор Switch
- •Логические операторы
- •Логическое отрицание
- •Логическое и
- •Логическое или
- •Пример: закон де-Моргана.
- •Порядок выполнения логических операторов
- •Тема №5 Циклы
- •Цикл с предусловием
- •Циклы с постусловием
- •Цикл for
- •Вложенные циклы
- •Тема №6 Одномерные массивы
- •Начальная инициализация массива.
- •Размер массива
- •Переполнение массива
- •Пример с одномерным массивом
- •Многомерные статические массивы
- •Пример с многомерным массивом
- •Тема №7 Строки в си. Введение
- •Чтение строк
- •Указатели
- •Определение
- •Арифметика указателей
- •Указатель на указатель
- •Указатели и приведение типов
- •Null pointer - нулевой указатель
- •Пример работы с указателями
- •Тема №8 Указатели и массивы
- •Многомерные массивы и указатели на многомерные массивы
- •Определение макросов
- •Тема №9 Тернарный оператор и оператор запятая
- •Оператор запятая.
- •Сегментация приложения на си
- •Тема №10 Динамическое выделение памяти
- •Освобождение памяти с помощью free
- •Работа с двумерными и многомерными массивами
- •Тема №11 Параметры командной строки
- •Функции
- •Параметры и аргументы
- •Передача аргументов По значению
- •По указателю (ссылке)
- •Передача массива в качестве аргумента
- •Тема №12 Битовые операции
- •Операции побитового сдвига
- •Примеры
- •Вопросы к экзамену по дисциплине «Основы программирования»
Экспоненциальная форма представления чисел
Экспоненциальной формой представления числа называют представление числа в виде
M e ± p
где M - мантиса числа, p - степень десяти. При этом у мантисы должен быть один ненулевой знак перед десятичной запятой.
Например:
1.25 === 1.25e0, 123.5 === 1.235e2, 0.0002341 === 2.341e-4 и т.д.
Представления 3.2435e7 эквивалентно 3.2435e+7
Объявление переменных
В си переменные объявляются всегда в начале блока (блок - участок кода, ограниченный фигурными скобками)
<возвращаемый тип> <имя функции> (<тип> <аргумент>[, <тип> <аргумент>]) {
объявление переменных
всё остальное
}
При объявлении переменной пишется её тип и имя.
int a;
double parameter;
Можно объявить несколько переменных одного типа, разделив имена запятой
long long arg1, arg2, arg3;
Например
#include <stdio.h>
#include <conio.h>
int main() {
int a = 10;
int b;
while (a>0){
int z = a*a;
b += z;
}
}
Здесь объявлены переменные a и b внутри функции main, и переменная z внутри тела цикла. Следующий код вызовет ошибку компиляции.
int main() {
int i;
j = 10;
int j;
}
Это связано с тем, что объявление переменной стоит после оператора присваивания. При объявлении переменных можно их сразу инициализировать.
int i = 0;
При этом инициализация при объявлении переменной не считается за отдельный оператор, поэтому следующий код будет работать:
int main() {
int i = 10;
int j;
}
Начальное значение переменной
Очень важно запомнить, что переменные в си не инициализируются по умолчанию нулями, как во многих других языках программирования. После объявления переменной в ней хранится "мусор" - случайное значение, которое осталось в той области памяти, которая была выделена под переменную. Это связано, в первую очередь, с оптимизацией работы программы: если нет необходимости в инициализации, то незачем тратить ресурсы для записи нулей.
#include<conio.h>
#include<stdio.h>
int main() {
int i;
printf("%d", i);
getch();
}
Если выполнять эту программу, то программа выведет "мусор". В некоторых компиляторах при выполнении этой программы будет вывдится предупреждение.
Область видимости переменной
Переменные бываю локальными (объявленными внутри какой-нибудь функции) и глобальными. Глобальная переменная видна всем функциям, объявленным в данном файле. Локальная переменная ограничена своей областью видимости. Когда мы говорим, что переменная "видна в каком-то месте", это означает, что в этом месте она определена и её можно использовать. Например, рассмотрим программу, в которой есть глобальная переменная
#include<conio.h>
#include<stdio.h>
int global = 100;
void foo() {
printf("foo: %d\n", global);
}
void bar(int global) {
printf("bar: %d\n", global);
}
int main() {
foo();
bar(333);
getch();
}
Будет выведено
foo: 100
bar: 333
Здесь глобальная переменная global видна всем функциям. Но аргумент функции затирает глобальную переменную, поэтому при передаче аргумента 333 выводится локальное значение 333.
Вот другой пример.
#include<conio.h>
#include<stdio.h>
int global = 100;
int main() {
int global = 555;
printf("%d\n", global);
getch();
}
Программа выведет
555
Также, как и в прошлом случае, локальная переменная "важнее". Переменная, объявленная в некоторой области видимости не видна вне её, например.
#include<conio.h>
#include<stdio.h>
int global = 100;
int main() {
int x = 10;
{
int y = 30;
printf("%d", x);
}
printf("%d", y);
}
Этот пример не скомпилируется, потому что переменная y существует только внутри своего блока.
Вот ещё пример, когда переменные, объявленные внутри блока перекрывают друг друга
#include<conio.h>
#include<stdio.h>
int global = 100;
int main() {
int x = 10;
{
int x = 20;
{
int x = 30;
printf("%d\n", x);
}
printf("%d\n", x);
}
printf("%d\n", x);
getch();
}
Программа выведет:
30
20
10
Глобальных переменных необходимо избегать. Очень часто можно услышать такое. Давайте попытаемся разобраться, почему. В ваших простых проектах глобальные переменные выглядят вполне нормально. Но представьте, что у вас приложение, которое:
разрабатывается несколькими людьми и состоит из сотен тысяч строк кода;
работает в несколько потоков.
Во-первых, глобальная переменная, если она видна всем, может быть изменена любой частью программы. Вы изменили глобальную переменную, хотите её записать, а другая часть программы уже перезаписала в неё другое значение (на самом деле это целый класс проблем, которые возникают в многопоточной среде).
Во-вторых, при больших размерах проекта не уследить, кто и когда насоздавал глобальных переменных. В приведённых выше примерах видно, как переменные могут перекрывать друг друга, то же произойдёт и в крупном проекте.
Переменные могут быть не только целочисленными и с плавающей точкой. Существует множество других типов, которые мы будем изучать в дальнейшем.
