- •Раздел 1. Классификация систем теплоснабжения
- •Водяные системы
- •Водяные системы: закрытые Схемы присоединения абонентских установок к тепловой сети
- •Групповые тепловые подстанции
- •Зависимое присоединение отопительной установки
- •Зависимая схема присоединения с элеватором
- •Независимая схема присоединения отопительной установки
- •Аккумуляторы горячей воды
- •Параллельное присоединение гвс и отопления
- •Двухступенчатая смешанная схема
- •Двухступенчатая последовательная схема присоединения гвс и отопления
- •Присоединение вентиляционных калориферов
- •Трехтрубная закрытая водяная система теплоснабжения
- •Основные недостатки закрытых систем
- •Водяные системы: открытые
- •Схемы присоединения открытых систем теплоснабжения
- •Присоединение по принципу несвязанного регулирования
- •Присоединение по принципу связанного регулирования
- •Однотрубные системы теплоснабжения
- •Основные преимущества открытых систем
- •Недостатки открытых систем
- •Выбор теплоносителя и системы теплоснабжения
- •Основные преимущества воды как теплоносителя
- •Основные недостатки воды как теплоносителя
- •Паровые системы Паровая система с возвратом конденсата
- •Паровая система без возврата конденсата
- •Сверхдальняя транспортировка теплоты
- •Паровая конверсия метана
- •Эндотермические реакции разложения растворов
Двухступенчатая последовательная схема присоединения гвс и отопления
В двухступенчатой последовательной схеме (см. рис 1.1, и) сетевая вода, поступающая из подающей линии тепловой сети, разветвляется на два потока. Один поток проходит через регулятор расхода 12, другой — через водо-водяной подогреватель 8. Сетевая вода, прошедшая через подогреватель 8, смешивается затем с потоком воды, прошедшим через регулятор расхода, и общий поток воды поступает через элеватор 15 в отопительную установку. Обратная вода после отопительной установки предварительно проходит через водо-водяной подогреватель нижней ступени 7, в котором она подогревает холодную воду, поступающую из водопровода. Подогретая водопроводная вода после нижней ступени 7 проходит через водо-водяной подогреватель верхней ступени 8 и направляется в местную систему горячего водоснабжения. В том случае, когда после нижней ступени 7 температура подогретой водопроводной воды достаточна для удовлетворения потребителей горячего водоснабжения, регулятор температуры 13 перекрывает проход сетевой воды через верхнюю ступень 8, При этом режиме весь поток сетевой воды поступает из подающей линии сети через клапан регулятора 12 в отопительную установку.
Если температура водопроводной воды после нижней ступени подогрева 7 ниже требуемой, регулятор температуры 13 открывает клапан и на подогреватель верхней ступени 8 ответвляется часть воды, поступающей на абонентский ввод из подающей линии тепловой сети.
При любом положении регулятора температуры расход сетевой воды на абонентских вводах остается практически постоянным. Это обеспечивается регулятором расхода 12, поддерживающим практически постоянный перепад давлений в сопле элеватора 15, через которое проходит весь расход сетевой воды, поступающей на абонентский ввод. При увеличении регулятором 13 расхода сетевой воды через подогреватель 8 регулятор 12 прикрывается.
В летний период, когда отопительная установка отключена, подогреватели верхней и нижней ступеней 8 и 7 включаются в работу последовательно помимо отопительной установки с помощью специальной перемычки (не показанной на схеме). Сетевая вода из подающей линии проходит последовательно через подогреватели верхней и нижней ступеней и отводится в обратную линию тепловой сети. Схема движения водопроводной воды через подогреватели остается неизменной зимой и летом.
В зимний период в часы максимальной нагрузки горячего водоснабжения часть сетевой воды или вся сетевая вода пропускается через подогреватель верхней ступени 8. Так как в этом подогревателе температура сетевой воды снижается, то снижается также температура воды, поступающей в элеватор 15, и в результате уменьшается отдача теплоты на отопление здания. Теплота, недоданная на отопление в периоды большой нагрузки горячего водоснабжения, компенсируется в периоды малой нагрузки горячего водоснабжения, когда в элеватор поступает поток воды повышенной температуры.
В подогревателе нижней ступени 7 значительное количество теплоты обратной воды используется для горячего водоснабжения. Все это приводит к уменьшению расчетного расхода воды в сети по сравнению со смешанной двухступенчатой схемой. При соответствующем температурном режиме теплоподготовительной установки, когда в подающем трубопроводе тепловой сети поддерживается температура, превышающая требуемую для отопительных установок на температурный перепад, используемый в подогревателях верхней ступени, нагрузка горячего водоснабжения удовлетворяется без дополнительного расхода воды в тепловой сети по сравнению с расчетным расходом воды на отопление (см. пункт 2.4). Снижение расчетного расхода воды в тепловой сети позволяет уменьшить ее диаметр, снизить начальные затраты на ее сооружение и удешевить транспорт и распределение теплоты.
При двухступенчатом последовательном присоединении температура обратной сетевой воды, возвращаемой на ТЭЦ, получается ниже, чем при параллельном присоединении. Это позволяет использовать на ТЭЦ для подогрева сетевой воды отработавший пар более низкого давления, отчего возрастает удельная комбинированная выработка электрической энергии.
Преимущество двухступенчатой последовательной схемы (см. рис. 1.1, и) по сравнению с двухступенчатой смешанной схемой (см. рис. 1.1, з) заключается в выравнивании суточного графика тепловой нагрузки и лучшем использовании энтальпии теплоносителя, что приводит к дополнительному уменьшению расхода воды в сети.
Недостаток двухступенчатой последовательной схемы по сравнению с двухступенчатой смешанной заключается в усложнении схемы регулирования ГТП или абонентских вводов из-за необходимости изменения расхода сетевой воды у абонентов, у которых относительная нагрузка горячего водоснабжения (отношение средненедельной нагрузки горячего водоснабжения к расчетной отопительной нагрузке) отличается от типовой относительной нагрузки, по которой ведется центральное регулирование. Указанный недостаток двухступенчатой последовательной схемы устраняется при применении местного автоматического регулирования отопительных установок (см. рис. 1.1, л и м). Двухступенчатая последовательная схема присоединения получила широкое применение в городских тепловых сетях при закрытой системе теплоснабжения.
Для постоянного обеспечения в водоразборных кранах горячего водоснабжения у потребителей температуры воды не ниже 50 °С в любое время суток в крупных жилых зданиях системы горячего водоснабжения выполняются двухтрубными с постоянной циркуляцией, обеспечиваемой насосом 16. В схеме 1.1, е в периоды малого разбора горячей воды у потребителей давление в циркуляционной линии повышается, соответственно возрастает расход воды из циркуляционной линии в насос 16 и усиливается циркуляция воды в системе горячего водоснабжения.
В периоды большого водоразбора давление в циркуляционной линии снижается и соответственно уменьшается циркуляционный расход в системе горячего водоснабжения. Однако при этом режиме через подающие линии и стояки системы горячего водоснабжения проходит большой расход воды и поэтому выстывание воды на пути между подогревательной установкой и водоразборными кранами незначительно. Обратный клапан 5 защищает систему горячего водоснабжения от поступления в нее холодной воды помимо подогревателя.
При двухступенчатой подогревательной установке горячего водоснабжения (см. рис. 1.1, з, и) нагреваемая водопроводная вода проходит последовательно по схеме противотока через нижний 7 и верхний 8 подогреватели. При такой схеме достаточно полно используется энтальпия теплоносителя.
Во всех ранее рассмотренных схемах присоединения отопительных установок к тепловой сети (см. рис. 1.1, а—в) в качестве основного регулирующего устройства использован регулятор расхода 12, являющийся, по существу, регулятором постоянства расхода, так как его задачей является поддержание постоянного расхода сетевой воды на отопление. Такой метод регулирования принципиально применим только в районах с однородной тепловой нагрузкой, когда можно ограничиться только центральным качественным регулированием теплоснабжения путем изменения температуры сетевой воды, поступающей после теплоподготовительной установки источника теплоты (ТЭЦ или котельной) в подающий трубопровод тепловой сети, по тому же закону, по которому изменяется тепловая нагрузка абонентов.
