Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теор.мех.лекции ПГ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
13.14 Mб
Скачать

2.4. Равновесие системы сходящихся сил

Для равновесия ССС необходимо и достаточно, чтобы равнодействующая этих сил, R, была равна нулю.

Геометрическая интерпретация этого условия означает, что силовой многоугольник, построенный из этих сил (рис. 2.3), должен быть замкнутым.

В аналитической форме условие равновесия ССС может быть получено из выражения (2.7). Если R=0, то Rx=Ry=Rz=0. Учитывая, что R – это вектор суммы ССС, получим:

ΣFkx=0, ΣFky=0, ΣFkz=0 (2.9)

Условия (2.9) можно сформулировать следующим образом:

для равновесия ССС необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Теорема о 3-х силах: если свободное твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке.

Докажем эту теорему с помощью аксиом статики. Поскольку все три силы непараллельные, то их линии действия будут пересекаться. Рассмотрим две силы (F1 и F2). Используя следствие 2-й аксиомы, перенесем точки приложения этих сил в точку А, в

место пересечения их линий действия (рис. 2.5,а). Используя аксиому параллелограмма, заменим эти две силы их равнодействующей, Q:

Для равновесия тела под действием двух оставшихся сил Q и F3 необходимо, чтобы выполнялась аксиома 1, согласно которой эти две силы должны быть направлены вдоль од-

ной и той же прямой (рис. 2.5,6). Это означает, что линия действия силы F3 проходит через ту же точку А, где пересекаются линии действия сил F1 и F2, что и требовалось доказать.

Лекция 3. 3.1. Момент силы относительно точки.

Моментом силы количественно характеризуется эффект ее воздействия на тело, при котором тело получает угловое перемещение (рис.2.6.).

Моментом силы относительно центра, m0(F), называется величина, равная произведению модуля силы, F, на длину ее плеча, h, т.е.

где hплечо силы, равное кратчайшему расстоянию от центра О до линии действия силы. Величина момента считается положительной, если сам вектор силы, F,

вращается относительно центра против часовой стрелки (как показано на рис. 2.6) и отрицательной, если это вращение происходит по часовой стрелке.

Свойства момента силы относительно центра:

1. Величина момента силы не изменится, если ее точку приложения перенести по

линии действия.

Действительно, при переносе силы не меняется ни ее модуль, ни плечо. Поэтому произведение в правой части (2.11) не изменится.

2. Момент силы равен нулю, когда ее линия действия пересекает данный центр.

3. Момент силы численно равен удвоенной площади треугольника oab, построенного

на силе и центре (рис. 2.6), т.е.: m0(F)=2SΔOAB.

Действительно,

Сравнивая правую часть полученного выражения (2.12) с формулой момента силы (2.11), заключаем, что площадь треугольника равна половине величины момента силы, что и означает третье свойство момента силы.