Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_20-29 физкол.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
324.56 Кб
Скачать

1) Гетерогенный катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества

  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

  3. Химическая реакция между реагирующими молекулами

  4. Десорбция продуктов с поверхности катализатора

  5. Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Факторы, влияющие на скорость реакций:

1)     природа реагирующих веществ;

2)     концентрация (давление влияет через изменение концентрации);

3)     температура;

4)     катализатор (изменение природы реагирующих веществ).

2) Набухание полимеров

В результате диффузии молекул жидкости в среду полимерного образца объем последнего резко увеличивается. Полимер набухает, поскольку начинают разрушаться слабые межмолекулярные образования. В предельном случае полимер растворяется в жидкости.

Процесс набухания характеризуется степенью набухания α:

 

(5.12)

где m - масса полимера после набухания, m0 - масса полимера до соприкосновения с жидкостью.

Степень набухания может достигать большой величины. Например, для каучука в бензоле степень набухания может достигать 1000 ÷ 1500 %.

Чем гибче цепи макромолекул, тем интенсивнее процесс набухания. Процесс сильно зависит от величины межмолекулярного взаимодействия полимера и жидкости и сопровождается тепловым эффектом.

В зависимости от природы полимера и растворителя набухание бывает ограниченное инеограниченное. Эти процесс аналогичны процессам смешения низкомолекулярных веществ, например, спирт и вода смешиваются неограниченно, а фенол и вода - ограниченно. На рис. 5.7 представлены зависимости количества поглощенной жидкости (ω) от времени (τ). Видно, что кривые набухания  1 и 2 имеют предел, который называют пределом набухания. Величина предела набухания увеличивается с ростом температуры (Т2 > Т1). При увеличении температуры до Т3 (кривая 3) ограниченное набухание переходит в неограниченное. Аналогичный вид имеют и зависимости степени набухания от времени.

Процесс набухания делится на две стадии: сольватацию и собственно набухание. Процесс набухания в воде называют гидротацией. На стадии сольватации происходит взаимодействие свободных активных групп полимера с молекулами низкомолекулярного растворителя. При этом энергия взаимодействия между молекулами полимера и жидкости должна быть больше энергии взаимодействия между молекулами полимера. Когда все активные группы полимера окажутся связанными с растворителем, наступает стадия чисто механического диффузионного проникновения растворителя в межцепное провстранство.

На первой стадии происходит выделение тепла, на второй - тепловой эффект набухания равен нулю.  Границу между первой и второй стадиями устанавливают по зависимостям теплового эффекта ( ) и работы набухания (A) от количества поглощенной жидкости (рис. 5.8). Здесь при определенной доле абсорбированной жидкости (ω) тепловой эффект становится равным нулю, а работа набухания продолжает монотонно уменьшаться. Заштрихованная область на рисунке соответствует собственно набуханию.

Энтропия на первой стадии процесса набухания аналогично процессу сорбции уменьшается (ΔS < 0), а на второй стадии увеличивается (ΔS > 0).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]