Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физике.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.49 Mб
Скачать

19.Дифференциальное уравнение свободных колебаний в электрическом колебательном контуре. Формула Томсона.

Для возбуждения и поддержания электромагнитных колебаний использует­ся колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Рассмотрим последовательные стадии колебательного процесса в идеализирован­ном контуре, сопротивление которого пренебрежимо мало (R0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Тогда в начальный момент времени t=0 между обкладками конденсатора возникнет электрическое поле, энергия которого Q2 Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна воз­растать.

Так как R0, то, согласно закону сохранения энергии, полная энергия

Если со­противление R=0, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда дифференциальное уравнение свободных гармонических колебаний заряда в контуре.

заряд Q совершает гармонические колебания по закону

(1.1)

где Qm — амплитуда колебаний заряда конденсатора с циклической частотой 0, называемой собственной частотой контура, т. е.

(1.2)

и периодом

(1.3)

Формула (1.3) впервые была получена У. Томсоном и называется формулой Томсона.

20. Дифференциальное уравнение свободных затухающих колебаний в электрическом колебательном контуре. Логарифмический декремент затухания.

Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как   (1)  где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.  Решение уравнения (1) запишем в виде   (2)  где u=u(t). После взятия первой и второй производных (2) и подстановки их в выражение (1) найдем   (3) 

Решение уравнения (3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай положителньного коэффициента:   (4)  (если (ω02 - σ2)>0, то такое обозначение мы вправе сделать). Тогда получим выражение   , у которого решение будет функция  . Значит, решение уравнения (1) в случае малых затуханий (ω02 >> σ2 )   (5)  где   (6)  — амплитуда затухающих колебаний, а А0 — начальная амплитуда. Выражение (5) представлено графики рис. 1 сплошной линией, а (6) — штриховыми линиями. Промежуток времени τ = 1/σ, в течение которого амплитуда затухающих колебаний становится мешьше в е раз, называется временем релаксации

Затухание не дает колебаниям быть периодичными и, строго говоря, к ним нельзя применять понятие периода или частоты. Но если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 1). В этом случае период затухающих колебаний с учетом выражения (4) будет равен    Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение    называется декрементом затухания, а его логарифм   (7)  — логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы.  Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна   (8)  (так как затухание мало (ω02 >> σ2 ), то T принято равным Т0).  Из формулы (8) вытекает, что добротность пропорциональна числу колебаний Ne, которые система совершает за время релаксации.  Выводы и уравнения, полученные для свободных затухающих колебаний линейных систем, можно использовать для колебаний различной физической природы — механических (в качестве примера возьмем пружинный маятник) и электромагнитных (в качестве примера возьмем электрический колебательный контур).