- •1. Магнитное поле и его характеристики. Вектор магнитной индукции.
- •2.Закон Био-Савара-Лапласа в векторной и скалярной формах. Принцип суперпозиции магнитных полей.
- •3. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля в центре кругового проводника с током.
- •4. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля прямого тока.
- •5. Закон Ампера. Взаимодействие параллельных токов.
- •6. Сила Лоренца. Движение зараженной частицы в мп.
- •7. Закон полного тока для мп.
- •8. Магнитный поток. Теорема Гаусса для мп.
- •9. Работа по перемещению проводника с током в мп.
- •10. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •11. Индуктивность контура. Самоиндукция.
- •12.Взаимная индукция
- •13. Энергия магнитного поля. Объемная плотность энергии магнитного поля.
- •14.Намагниченность.Закон полного тока для магнитного поля в веществе.
- •15.Уравнение Максвелла для электромагнитного поля.
- •16.Электромагнитные волны и их свойства.
- •17. Волновое уравнение для электромагнитного поля
- •18. Энергия электромагнитного поля. Плотность энергии эм поля. Плотность потока энергии эм поля. Вектор Умова-Пойтинга.
- •19.Дифференциальное уравнение свободных колебаний в электрическом колебательном контуре. Формула Томсона.
- •20. Дифференциальное уравнение свободных затухающих колебаний в электрическом колебательном контуре. Логарифмический декремент затухания.
- •21)Дифференциальное уравнение вынужденных электромагнитных колебаний. Резонанс.
- •22. Переменный ток. Закон Ома для переменного тока
- •23. Мощность переменного тока.
- •24. Основные законы геометрической оптики.
- •25. Законы отражения и преломления. Полное внутреннее отражение.
- •26 Линзы и их основные характеристики. Формула тонкой линзы.
- •27. Построение изображения предмета в собирающих и рассеивающих линзах.
- •28. Фотометрические величины и их единицы измерения. Закон освещенности.
- •29.Интерференция световых волн. Связь между разностью фаз и оптической разностью хода. Условия интерференционных максимумов и минимумов.
- •30.Интерференция света от двух когерентных источников. Ширина интерференционной полосы.
- •31) Интерференция света от плоскопараллельной пластины. Полосы равного наклона.
- •32. Полосы равной толщины. Кольца Ньютона
- •33.Дифракция света. Принцип Гюйгенса-Френеля.
- •34) Метод зон Френеля
- •35. Дифракция Френеля на круглом отверстии и на круглом диске.
- •36. Дифракция Фраунгофера на одной щели.
- •37.Дифракционная решетка.
- •38. Нормальная и аномальная дисперсия света. Электронная теория дисперсии света.
- •39. Поглощение света. Закон Бугера-Ламберта.
- •40.Естественный и поляризованный свет. Закон Малюса
- •41) Поляризация света при отражении и преломлении. Закон Брюстера.
- •42. Поляризация света при двойном лучепреломлении. Призма Николя.
- •45. Закон Стефана- Ьольцмана для абсолютного черного тела
- •46 Законы Вина для абсолютно черного тела.
- •47.Формулы Рэлея-Джинса и Вина. Ультрофиолетовая катастрофа.
- •48. Квантовая гипотеза. Формула Планка, следствие ф-лы Планка.
- •49. Фотоны. Энергия и импульс световых квантов
- •50.Законы внешнего фотоэффекта. Уравнение Эйнштейна.
- •51) Эффект Комптона.
- •52.Корпускулярно – волновой дуализм свойств частиц. Гипотеза де Бройля.
- •53.Волна де Бройля. Свойства волн де Бройля.
- •54 Опыты Резерфорда по рассеянию альфа-частиц.Планетарная модель атома.
- •56 Постулаты Бора. Опыты Франка и Герца.
- •57.Спектр атома водорода по Бору. Полная энергия электрона.
- •55. Линейный спектр атома водорода. Обобщенная формула Бальмера
- •58. Соотношение неопределенностей Гейзенберга.
- •59. Волновые свойства микрочастиц. Волновая функция и её статистический смысл.
- •60.Временное и стационарное уравнения Шредингера.
- •61) Частица в одномерной прямоугольной яме.
- •62. Прохождение частицы через прямоугольный потенциальный барьер.
- •63.Линейный гармонический осциллятор в квантовой механике.
- •64. Уравнение Шредингера для атома водорода
- •65. Квантовые числа. Принцип Паули.
- •66. Строение атомных ядер.
- •67.Дефект массы ядра.Энергия связи ядра. Удельная энергия связи.
- •68. Ядерные силы. Обменный характер сил. Модели ядра.
- •13.1.4.Модели ядра
- •69. Закон радиоактивного распада. Активность нуклида.
- •70. Правила смещения при альфа-распаде и бета-распаде.
- •71) Закономерности и происхождение альфа- бета - и гамма-излучения, их взаимодействие с веществом.
- •72.Ядерные реакции
60.Временное и стационарное уравнения Шредингера.
Уравнение Шредингера — основное уравнение нерелятивистской квантовой механики, описывающее динамику частиц. Предложено Э. Шредингером в 1926 г. Состояние классической частицы в любой момент времени описывается заданием ее координат и импульсов (x,y,z,px,py,pz). Зная эти величины в момент времени t, можно определить эволюцию системы под действием известных сил во все последующие моменты времени. Координаты и импульсы частиц сами являются величинами, непосредственно измеряемыми на опыте. В квантовой физике состояние системы описывается волновой функцией ψ(x,y,z,t). Т. к. для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса, то не имеет смысла говорить о движении частицы по определенной траектории, можно определить только вероятность нахождения частицы в данной точке в данный момент времени, которая определяется квадратом модуля волновой функции
W ~ |ψ(x,y,z,t)|2.
Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера
где
ψ(x,y,z,t) − волновая функция,
−
оператор Гамильтона (оператор полной
энергии системы).
В нерелятивистском случае
где
m − масса частицы,
−
оператор импульса,
(x,y,z,t)
− оператор потенциальной энергии
частицы. Задать закон движения частицы
в квантовой механике это значит
определить значение волновой функции
в каждый момент времени в каждой точке
пространства. Уравнение Шредингера
играет в квантовой механике такую же
роль, как и второй закон Ньютона в
классической механике.
В
стационарном состоянии
Ψ (x, y, z, t) = ψ(x, y, z)e-iEt/ћ.
Так как вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(x, y, z, t )|2 , то в данном случае она ~ |ψ (x, y, z)|2, т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, т.к. выражается через квадраты модулей волновых функций. Уравнение Шредингера для стационарного состояния, когда потенцииальная энергия частицы явным образом не зависит от времени, имеет вид
ψ(x, y, z) = Eψ(x, y, z).
Это уравнение называют стационарным уравнением Шредингера. Одна из специфических особенностей квантовых систем состоит в том, что энергетические спектры частиц, находящихся в ограниченном объеме пространства дискретны
61) Частица в одномерной прямоугольной яме.
Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида
Где - ширина «ямы», а энергия отсчитывается от ее дна
Уравнения
Шредингера для стационарных состояний
в случае одномерной задачи запишется
в виде
По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения за пределами «ямы» равна нулю. На границах ямы непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид
В пределах «ямы» уравнение Шредингера сведется к уравнению
или
,
где
Общее решение дифференциального уравнения
