Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физике.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.49 Mб
Скачать

39. Поглощение света. Закон Бугера-Ламберта.

Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера*:

(1.1)

где I0 и I интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х=1/ интенсивность света I по сравнению с I0 уменьшается в е раз.

Коэффициент поглощения зависит от длины волны  (или частоты ) и для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10–12—10–11 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молеку­лах, характеризуется полосами поглощения (примерно 10–10—10–7 м).

Коэффициент поглощения для диэлектриков невелик (примерно 10–3—10–5 см–1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлени­ем резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно 103—105 см–1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превраща­ясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис. представлены типичная зависимость коэффициента поглощения от длины волны света и зависимость показателя преломления n от в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается ано­мальная дисперсия (n убывает с уменьшением ).

40.Естественный и поляризованный свет. Закон Малюса

Естественный и поляризованный свет. Электромагнитная волна является поперечной. Колебания вектора напряженности электрического поля и вектора индукции магнитного поля в электромагнитной волне происходят в перпендикулярных к направлению распространения волны плоскостях. Направление вектора напряженности электрического поля  определяет тип поляризации световой волны.

Рис. 5.1

Рис. 5.2

Если колебания вектора   происходят в одной плоскости, такая волна называется плоскополяризованной или линейнополяризованной (рис. 5.1). Плоскость, проходящая через вектор   и направление распространения волны, называется плоскостью колебаний.

Если конец вектора   в плоскости, перпендикулярной к направлению распространения волны, описывает эллипс или окружность, то свет соответственно называется эллиптически поляризованным или поляризованным по кругу. Распределение вектора напряженности эллиптически поляризованного света показано на рис. 5.2

Если конец вектора   в плоскости, перпендикулярной к направлению распространения волны, совершает беспорядочные колебания, то есть плоскость колебаний постоянно и беспорядочно меняется, то свет называется естественным или неполяризованным. Условно это можно изобразить так, как показано на рис. 5.3, где стрелками показано направление колебаний вектора  .

Как правило, естественные источники света (солнце, пламя свечи, электрическая лампа) излучают именно такие, неполяризованные электромагнитные волны. Излучение таких источников представлено в каждый момент времени из световых волн от огромного числа независимо излучающих атомов с различной поляризацией. Каждый атом излучает плоскополяpизованные волны, но плоскости их колебаний никак не согласованы между собой. Поэтому в результирующей волне вектор напряженности электрического поля беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными.

Рис. 5.3

Рис. 5.4

Наконец, можно создать частично поляризованный свет, в котором не все плоскости колебаний одинаково представлены, а имеется некоторое преимущественное направление колебаний вектора   (рис. 5.4). Из рис. 5.4 видно, что вертикальные колебания соответствуют максимальной интенсивности  , горизонтальные – минимальной  . Частично поляризованный свет характеризуют степенью поляризации  , которую определяют как

.

Для плоскополяризованного света  ; для естественного света  ; для эллиптически поляризованного света понятие «степень поляризации» неприменимо.

В каждый момент времени вектор   может быть спроектирован на две взаимно перпендикулярные оси (рис. 5.5).

.

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух плоскополяризованных во взаимно перпендикулярных направлениях волн. Но в поляризованной волне составляющие   и   когерентны, т.е. имеют постоянную разность фаз, а в неполяризованной – некогерентны, то есть разность фаз случайно меняется со временем.

Таким образом, естественный свет можно представить как наложение двух некогерентных электромагнитных волн, поляризованных во взаимно перпендикулярных плоскостях и имеющих одинаковую интенсивность. Такое представление намного упрощает рассмотрение прохождения света через поляризационные устройства.

Если на анализатор падает поляризованный луч, плоскость поляризации которого составляет угол  с плоскостью поляризации анализатора, то интенсивность прошедшего сквозь анализатора луча определяет закон Малюса.

закон Малюса :

,

где Io - интенсивность луча, прошедшего анализатор и поляризатор, когда их плоскости поляризации параллельны; I - интенсивность луча, выходящего из анализатора, без учета потерь в анализаторе в результате поглощения и рассеяния света.