- •Unit I organic chemistry
- •Functional groups
- •Physical properties of an organic substance
- •Organic Compounds
- •Revision exercises
- •Unit II types of chemical reactions
- •Basic concepts of chemical reactions
- •Classification by types of reactants
- •Classification by reaction mechanism
- •Revision exercises
- •Unit III types of bonds
- •Ionic Bonds
- •Covalent Bonds
- •Metallic and Hydrogen Bonds
- •Revision exercises
- •Unit IV Isomerism
- •The Isomerism tree
- •Revision exercises
- •History of isomerism
- •Unit V Hydrocarbons
- •Hydrocarbons Classification
- •Revision exercises
- •Unit VI alkanes, alkenes, alkynes Alkanes
- •Alkenes
- •Alkynes
- •Revision exercises
- •Unit VII halogens
- •Elements
- •Applications of Halogens
- •Halogen derivatives
- •Revision exercises
- •Unit VIII nitro compounds
- •Physical properties of nitro compounds
- •The physical properties of amines
- •Various methods of organic synthesis of nitro compounds
- •Revision exercises
- •Unit IX Alcohols
- •Physical Properties of Alcohols
- •Chemical Properties of Alcohols
- •Preparation of Alcohols
- •Revision exercises
- •Nomenclature
- •Unit X Phenols
- •Natural sources of phenols
- •Revision exercises
- •Nomenclature of phenols
- •Unit XI ethers
- •Ether usage
- •Revision exercises
- •Unit XII aldehydes and ketones
- •Important aldehydes and ketones
- •Properties of aldehydes and ketones
- •Revision exercises
- •Unit XIII сarboxylic acid
- •Properties of carboxylic acids
- •Classes of carboxylic acids
- •Synthesis of carboxylic acids
- •Revision exercises
- •Unit XIV esters
- •Revision exercises
- •Unit XV carbohydrates
- •Carbohydrate benefits
- •Revision exercises
- •Unit XVI Fats
- •Fats and Oils
- •Saturated and Unsaturated Fatty Acids
- •Measures of Unsaturation
- •Revision exercises
- •Unsaturated Fatty Acids
- •Unit XVII proteins and peptides
- •Physicochemical properties of proteins
- •Classification by biological functions
- •Revision exercises
- •Unit XVIII Catalysts and Reaction Conditions Chemical reactions and catalysts
- •Enzymes
- •Revision exercises
- •Catalysts and Catalysis
- •Unit XIX bioactive compounds and biochemistry
- •Hormones
- •Major Types of Hormones
- •Vitamins
- •Biochemistry
- •Methods in biochemistry
- •Revision exercises
- •How to read chemical reactions
Enzymes
Enzymes are biological catalysts. They are proteins that fold into particular conformations such that they can help speed up very particular chemical reactions. For biochemical reactions, the reactant is typically called the substrate. The substrate is converted into the product. The mechanisms for many enzymes are very similar. The substrate(s) and the enzyme bind into a complex. The physical location on the enzyme in which the substrate binds is called the "active site". Once bound, this complex can then weaken particular bonds in the substrate such that chemistry occurs to form the product. The product is weakly bound to the substrate such that it now dissociates and the enzyme is free to bind another substrate molecule.
The active sites in enzymes can be very specific such that the enzyme will only catalyze a very specific reaction for a very specific molecule. Typically there is equilibrium between the bound complex and the free substrate and enzyme such that the binding could be reversible. In contrast, once the product is formed the backward reaction typically will never happen.
Substrate + Enzyme ↔ Complex → Product.
The activity of many enzymes can be blocked by molecules which mimic the substrate but don't do any chemistry. These molecules then effectively "turn off" the enzyme by blocking the active site and preventing binding of the substrate. Many pharmaceutical drugs operate in this way. Such molecules are typically called inhibitors as they inhibit the activity of the enzyme.
Enzymes are naturally occurring catalysts responsible for many essential biochemical reactions. Most solid catalysts are metals or the oxides, sulfides, and halides of metallic elements and of the semi-metallic elements boron, aluminum, and silicon. Gaseous and liquid catalysts are commonly used in their pure form or in combination with suitable carriers or solvents; solid catalysts are commonly dispersed in other substances known as catalyst supports.
In general, catalytic action is a chemical reaction between the catalyst and a reactant, forming chemical intermediates that are able to react more readily with each other or with another reactant, to form the desired end product. During the reaction between the chemical intermediates and the reactants, the catalyst is regenerated. The modes of reactions between the catalysts and the reactants vary widely and in solid catalysts are often complex. Typical of these reactions are acid–base reactions, oxidation–reduction reactions, formation of coordination complexes, and formation of free radicals. With solid catalysts the reaction mechanism is strongly influenced by surface properties and electronic or crystal structures. Certain solid catalysts, called polyfunctional catalysts, are capable of more than one mode of interaction with the reactants; bifunctional catalysts are used extensively for reforming reactions in the petroleum industry.
Catalyzed reactions form the basis of many industrial chemical processes. Catalyst manufacture is itself a rapidly growing industrial process.
