- •Вопрос 1 Трансформатор. Устройство и принцип действия трансформатора.
- •Вопрос 2 Группы соединения трансформатора, определение, отличия, применение
- •Вопрос 3. Схема замещения трансформатора
- •Вопрос 4. Внешняя характеристика трансформатора.
- •Вопрос 5. Коэффициент полезного действия трансформатора и классификация потерь в нем
- •Вопрос 6. Условия параллельной работы трансформаторов
- •Вопрос 7. Автотрансформаторы, особенности конструкции, принцип действия, характеристики
- •Вопрос 8. Сварочный трансформатор
- •Вопрос 9. Измерительные трансформаторы
- •Вопрос 10. Условия создания вращающегося магнитного поля в трехфазной системе
- •Вопрос 11. Условия создания вращающегося магнитного поля в однофазной системе
- •Вопрос 12. Устройство и принцип действия асинхронной машины
- •Вопрос 13. Режимы работы трёхфазной асинхронной машины
- •Вопрос 14. Понятие скольжения
- •Вопрос 15. Пуск в ход асинхронных двигателей
- •Вопрос 16. Энергетическая диаграмма асинхронного двигателя.
- •Вопрос 17. Мощность и коэффициент полезного действия электрических машин
- •Вопрос 18. Регулирование частоты вращения асинхронного двигателя
- •Вопрос 19. Однофазные конденсаторные двигатели, конструкция, особенности работы и пуска
- •Вопрос 20. Основные уравнения асинхронного двигателя
- •Вопрос 21. Механические характеристики ад
- •Вопрос 22. Ад с фазным ротором
- •Вопрос 23. Реостатный пуск асинхронных двигателей
- •Вопрос 24. Исполнительные асинхронные двигатели
- •Вопрос 25. Принцип действия синхронного генератора и синхронного двигателя
- •Вопрос 26. Пуск синхронного двигателя
- •Вопрос 27. Работа синхронного генератора под нагрузкой
- •Вопрос 28. Хар-ки сд
- •Вопрос 29. Параметры синхронных машин. Суть метода двух реакций.
- •Вопрос 30. Синхронно-реактивные двигатели
- •Вопрос 31. Синхронный компенсатор
- •Вопрос 32. Синхронные двигатели с постоянными магнитами
- •Вопрос 33. Включение генераторов на параллельную работу.
- •Вопрос 34. Угловые характеристики синхронного генератора
- •Вопрос 35. Конструкция и принцип действия двигателя постоянного тока независимого возбуждения
- •Вопрос 36. Регулирования частоты вращения двигателей постоянного тока
- •Вопрос 37. Условия самовозбуждения генераторов постоянного тока Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.
- •Вопрос 38. Коммутация в машинах постоянного тока
- •Вопрос 39. Способы регулирования частоты вращения двигателя постоянного тока
- •Вопрос 40. Характеристики генератора постоянного тока
- •Вопрос 41. Реакция якоря в машине постоянного тока
- •Вопрос 42. Принцип действия генератора постоянного тока. Назначение коллектора
- •Вопрос 43. Двигатели постоянного тока с самовозбуждением.
- •Недостатки применения постоянных магнитов
- •Генератор постоянного тока с независимым возбуждением
- •Cамовозбуждение генератора постоянного тока
- •Вопрос 44. Двигатели постоянного тока в системах автоматики
Вопрос 7. Автотрансформаторы, особенности конструкции, принцип действия, характеристики
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом — путем электромагнитной индукции и электрического соединения.. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.
В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).
Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.
Рис. 1 Схемы однофазных автотрансформаторов: а - понижающего, б - повышающего.
Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1, то оба тока геометрически сложатся, и по участку aХ будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
В электромагнитных преобразователях энергии - трансформаторах - передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.
Вопрос 8. Сварочный трансформатор
В отличие от силовых сварочные трансформаторы работают в режиме меняющихся напряжений и тока и рассчитаны на кратковременные короткие замыкания сети.
Для сварки переменным током широко применяют однофазные трансформаторы, которые разделяют силовую и сварочную цепи и понижают высокое напряжение 380 или 220 В до величины не более 80 В. Внешняя вольтамперная характеристика вторичной цепи этих трансформаторов, т. е. зависимость между величиной сварочного тока и напряжением, должна обеспечивать ведение устойчивого сварочного процесса, учитывающего статическую характеристику сварочной дуги.
Наличие индуктивного сопротивления необходимой расчетной величины обеспечивает в трансформаторах стабилизацию дуги и ее восстановление при частом изменении полярности переменного тока.
Сварочные трансформаторы применяются для ручной дуговой сварки штучными электродами и в защитном газе, а также для сварки под флюсом. Внешние вольтамперные характеристики трансформаторов для ручной дуговой сварки подразделяются на крутопадающие I и пологопадающие II. Эти трансформаторы работают в режиме регулятора сварочного тока, который осуществляется путем изменения индуктивного сопротивления обмоток. Трансформаторы, предназначенные для питания автоматизированной сварки при постоянной, не зависящей от напряжения дуги скорости подачи электродной проволоки, имеют жесткую внешнюю характеристику III
|
Внешние вольт-амперные характеристики источников питания I - крутопадающая, II - пологопадающая, III - жесткая, IV – возрастающая |
