- •Вопрос 1 Трансформатор. Устройство и принцип действия трансформатора.
- •Вопрос 2 Группы соединения трансформатора, определение, отличия, применение
- •Вопрос 3. Схема замещения трансформатора
- •Вопрос 4. Внешняя характеристика трансформатора.
- •Вопрос 5. Коэффициент полезного действия трансформатора и классификация потерь в нем
- •Вопрос 6. Условия параллельной работы трансформаторов
- •Вопрос 7. Автотрансформаторы, особенности конструкции, принцип действия, характеристики
- •Вопрос 8. Сварочный трансформатор
- •Вопрос 9. Измерительные трансформаторы
- •Вопрос 10. Условия создания вращающегося магнитного поля в трехфазной системе
- •Вопрос 11. Условия создания вращающегося магнитного поля в однофазной системе
- •Вопрос 12. Устройство и принцип действия асинхронной машины
- •Вопрос 13. Режимы работы трёхфазной асинхронной машины
- •Вопрос 14. Понятие скольжения
- •Вопрос 15. Пуск в ход асинхронных двигателей
- •Вопрос 16. Энергетическая диаграмма асинхронного двигателя.
- •Вопрос 17. Мощность и коэффициент полезного действия электрических машин
- •Вопрос 18. Регулирование частоты вращения асинхронного двигателя
- •Вопрос 19. Однофазные конденсаторные двигатели, конструкция, особенности работы и пуска
- •Вопрос 20. Основные уравнения асинхронного двигателя
- •Вопрос 21. Механические характеристики ад
- •Вопрос 22. Ад с фазным ротором
- •Вопрос 23. Реостатный пуск асинхронных двигателей
- •Вопрос 24. Исполнительные асинхронные двигатели
- •Вопрос 25. Принцип действия синхронного генератора и синхронного двигателя
- •Вопрос 26. Пуск синхронного двигателя
- •Вопрос 27. Работа синхронного генератора под нагрузкой
- •Вопрос 28. Хар-ки сд
- •Вопрос 29. Параметры синхронных машин. Суть метода двух реакций.
- •Вопрос 30. Синхронно-реактивные двигатели
- •Вопрос 31. Синхронный компенсатор
- •Вопрос 32. Синхронные двигатели с постоянными магнитами
- •Вопрос 33. Включение генераторов на параллельную работу.
- •Вопрос 34. Угловые характеристики синхронного генератора
- •Вопрос 35. Конструкция и принцип действия двигателя постоянного тока независимого возбуждения
- •Вопрос 36. Регулирования частоты вращения двигателей постоянного тока
- •Вопрос 37. Условия самовозбуждения генераторов постоянного тока Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.
- •Вопрос 38. Коммутация в машинах постоянного тока
- •Вопрос 39. Способы регулирования частоты вращения двигателя постоянного тока
- •Вопрос 40. Характеристики генератора постоянного тока
- •Вопрос 41. Реакция якоря в машине постоянного тока
- •Вопрос 42. Принцип действия генератора постоянного тока. Назначение коллектора
- •Вопрос 43. Двигатели постоянного тока с самовозбуждением.
- •Недостатки применения постоянных магнитов
- •Генератор постоянного тока с независимым возбуждением
- •Cамовозбуждение генератора постоянного тока
- •Вопрос 44. Двигатели постоянного тока в системах автоматики
Вопрос 39. Способы регулирования частоты вращения двигателя постоянного тока
Частота вращения двигателя постоянного тока
п = [U - Iа(ΣRа + Rдо6 )]/(сеФ).
Из уравнения следует, что возможны три способа регулирования его угловой скорости:
1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,
2) регулирование за счет изменения потока возбуждения двигателя Ф,
3)
регулирование за счет изменения
подводимого к обмотке якоря двигателя
напряжения U. Ток в цепи якоря Iя и момент
М, развиваемый двигателем, зависят
только от величины нагрузки на его
валу.
Рассмотрим первый
способ регулирования скорости двигателя
постоянного тока изменением сопротивления
в цепи якоря.
Схема включения двигателя для этого
случая представлена на рис. 1, а
электромеханические и механические
характеристики — на рис. 2, а.
Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)
Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.
Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.
Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.
Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.
При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.
При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Механические характеристики для различных значений потока двигателя приведены на рис. 2, а и 2, б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.
Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.
Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.
Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.
Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и Uном двигателя.
Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.
Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.
