- •4. Удаление газов.
- •4.1. Общие положения
- •4.2. Технология удаления диоксида углерода в декарбонизаторе
- •4.3. Технология удаления газов в деаэраторах
- •4.3.1. Общие сведения.
- •4.3.2. Классификация деаэраторов и основные требования, предъявляемые к ним.
- •4.3.3. Конструкции колонок атмосферных деаэраторов.
- •4.3.4. Применение и работа вакуумных деаэраторов.
- •4.3.5. Конструкции вакуумных деаэраторов.
- •4.3.6. Факторы, влияющие на повышение эффекта термической деаэрации.
- •4.4. Химические методы связывания кислорода и диоксида углерода
4.2. Технология удаления диоксида углерода в декарбонизаторе
Способ удаления из воды свободного диоксида углерода СО2 в декарбонизаторах методом аэрации широко применяется на ВПУ. На примере работы декарбонизатора легко показать, что можно не только десорбировать из воды одновременно все газы, растворенные в ней, но также осуществлять избирательную десорбцию какого-либо газа. Это достигается согласно закону Генри снижением парциального давления данного газа над водой без снижения общего давления и подогрева воды, что уменьшает энергетические потери. Практически это реализуется продувкой воды газом (или смесью газов), в составе которого десорбируемый газ или отсутствует, или что чаще, его концентрация чрезвычайно низка.
Образующийся в схемах ВПУ диоксид углерода, являясь коррозионно-активным, также участвует в анионообменных процессах на сильноосновном анионите, уменьшая рабочую емкость. Поэтому в тех схемах ВПУ, где СО2 образуется по реакции
п
ри
Н-катионировании или подкислении, его
необходимо удалять из воды. Осуществляется
это в специальных аппаратах —
декарбонизатоpax
— путем продувки воды воздухом, подаваемым
вентилятором.
Декарбонизатор представляет собой колонну, заполненную насадкой (деревянная, керамические кольца Рашига и др.) для дробления потока воды, подаваемой сверху на стекающие пленки, что увеличивает поверхность контакта воды и воздуха. Воздух, нагнетаемый вентилятором движется в насадке навстречу потоку воды и затем вместе с выделившимся СО2 выводится через верхний патрубок. Расход воздуха принимается равным 20 м на 1 м воды.
Расчет декарбонизатора состоит в определении геометрических размеров поверхности насадки и необходимого напора, создаваемого вентилятором.
4.3. Технология удаления газов в деаэраторах
4.3.1. Общие сведения.
Термическая деаэрация — это процесс десорбции газа, при котором происходит переход растворенного газа из жидкости в находящийся с ней в контакте пар.
Такой процесс может осуществляться при соблюдении законов равновесия между жидкой и газовой фазами. Совместное существование этих двух фаз возможно только при условии динамического равновесия между ними, которое устанавливается при длительном их соприкосновении. При динамическом равновесии (при определенных давлении и температуре) каждому составу одной из фаз соответствует равновесный состав другой фазы. Доведение воды до состояния кипения, когда р0 = рН2О, не является достаточным для полного удаления из нее растворенных газов. Удаление газов при термической деаэрации происходит в результате диффузии и дисперсного выделения их. При этом должны быть созданы условия перехода газов из воды в паровое пространство. Одним из таких условий является увеличение площади поверхности контакта воды с паром, чтобы максимально приблизить частицы потока деаэрируемой воды к поверхности раздела фаз. Это достигается дроблением потока воды на тонкие струи, капли или пленки, а также при барбатаже пара через тонкие слои воды.
Положительно сказывается на процессе деаэрации увеличение средней температуры деаэрируемой воды, так как при этом снижается вязкость ее и поверхностное натяжение и увеличивается скорость диффузии газов. В то же время эффективное удаление газа из воды также не является достаточным для эффективной деаэрации. Выделившийся из воды газ находится на поверхности жидкости или в непосредственной близости от нее, и при незначительном снижении температуры воды или повышении ее давления газ вновь поглощается водой.
Эффективная деаэрация достигается при полном отводе выделившихся газов за счет непрерывной вентиляции и вывода их из деаэратора. Газ из деаэратора отводится вместе с паром, который называют выпаром. Количество выпара оказывает существенное влияние на эффект деаэрации. Для деаэраторов повышенного давления количество выпара составляет 2—3 кг пара на 1 т деаэрируемой воды. Таким образом, количество пара, подводимого к деаэратору, должно обеспечивать поддержание состояния кипения деаэрируемой воды и оптимальный выпар, а гидравлическая нагрузка деаэратора должна быть такой, чтобы динамическое воздействие потока пара было преобладающим на границе фаз.
