Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КИМ пробный 2016.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
1 Mб
Скачать

Модуль «геометрия»

24 .  Сто­ро­на ромба равна 32, а ост­рый угол равен 60°. Вы­со­та ромба, опу­щен­ная из вер­ши­ны ту­по­го угла, делит сто­ро­ну на два от­рез­ка. Ка­ко­вы длины этих от­рез­ков?

25 . Точка E — се­ре­ди­на бо­ко­вой сто­ро­ны AB тра­пе­ции ABCD. До­ка­жи­те, что пло­щадь тре­уголь­ни­ка ECD равна по­ло­ви­не пло­ща­ди тра­пе­ции.

26 . Ме­ди­а­на BM тре­уголь­ни­ка ABC яв­ля­ет­ся диа­мет­ром окруж­но­сти, пе­ре­се­ка­ю­щей сто­ро­нуBC в её се­ре­ди­не. Най­ди­те длину сто­ро­ны AC, если ра­ди­ус опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC равен 7.

Вариант 9

Часть 1 Модуль «алгебра»

1 .  Най­ди­те зна­че­ние вы­ра­же­ния  

2 . На ко­ор­ди­нат­ной пря­мой от­ме­че­но число а.

Какое из утвер­жде­ний от­но­си­тель­но этого числа яв­ля­ет­ся вер­ным?

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 1)  2)  3)  4) 

3 . Рас­по­ло­жи­те в по­ряд­ке убы­ва­ния числа:  , 9,5; 2 .

 В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

1)  9,5; , 2 . 2)  9,5;2   3) ; 9,5 4) ; 9,5; 2

4 . Най­ди­те корни урав­не­ния

Если кор­ней не­сколь­ко, за­пи­ши­те их через за­пя­тую в по­ряд­ке воз­рас­та­ния.

5 . Уста­но­ви­те со­от­вет­ствие между гра­фи­ка­ми функ­ций и фор­му­ла­ми, ко­то­рые их за­да­ют.

 1)  2)  3)  4) 

За­пи­ши­те в ответ цифры, рас­по­ло­жив их в по­ряд­ке, со­от­вет­ству­ю­щем бук­вам:

 А

Б

В

6 . Дана ариф­ме­ти­че­ская про­грес­сия (an), раз­ность ко­то­рой равна −5,3, a1 = −7,7. Най­ди­те a7.

7 . Най­ди­те зна­че­ние вы­ра­же­ния   при b= -

8 . Ре­ши­те не­ра­вен­ство  .

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 1)  2)  3)  4) 

Модуль «геометрия»

9 . Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол тра­пе­ции. Ответ дайте в гра­ду­сах.

10 . От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от цен­тра окруж­но­сти до хорды AB равно 12.

11 . В рав­но­бед­рен­ном тре­уголь­ни­ке бо­ко­вая сто­ро­на равна 10, ос­но­ва­ние —  , а угол, ле­жа­щий на­про­тив ос­но­ва­ния, равен 30°. Най­ди­те пло­щадь тре­уголь­ни­ка.

12 .  На ри­сун­ке изоб­ра­жен ромб  . Ис­поль­зуя ри­су­нок, най­ди­те 

13 . Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

1) В любую рав­но­бед­рен­ную тра­пе­цию можно впи­сать окруж­ность.

2) Диа­го­наль па­рал­ле­ло­грам­ма делит его углы по­по­лам.

3) Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна по­ло­ви­не про­из­ве­де­ния его ка­те­тов.

 Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их в по­ряд­ке воз­рас­та­ния.

Модуль «реальная математика»

14 . В таб­ли­це при­ве­де­ны раз­ме­ры штра­фов за пре­вы­ше­ние мак­си­маль­ной раз­решённой ско­ро­сти, за­фик­си­ро­ван­ное с по­мо­щью средств ав­то­ма­ти­че­ской фик­са­ции, уста­нов­лен­ных на тер­ри­то­рии Рос­сии на 1 ян­ва­ря 2013 года.

 Пре­вы­ше­ние ско­ро­сти, км/ч

11 − 20

21 − 40

41 − 60

61 и более

Раз­мер штра­фа, руб.

100

300

1000

2500

 

Какой штраф дол­жен за­пла­тить вла­де­лец ав­то­мо­би­ля, за­фик­си­ро­ван­ная ско­рость ко­то­ро­го со­ста­ви­ла 112 км/ч на участ­ке до­ро­ги с мак­си­маль­ной раз­решённой ско­ро­стью 90 км/ч?

 1) 100 руб­лей 2) 300 руб­лей 3) 1000 руб­лей 4) 2500 руб­лей

15 . В таб­ли­це даны ре­ко­мен­ду­е­мые су­точ­ные нормы по­треб­ле­ния (в г/сутки) жиров, бел­ков и уг­ле­во­дов детьми от 1 года до 14 лет и взрос­лы­ми.

 Ве­ще­ство

Дети от 1 года

до 14 лет

Муж­чи­ны

Жен­щи­ны

Жиры

40—97

70—154

60—102

Белки

36—87

65—117

58—87

Уг­ле­во­ды

170—420

257—586

 Какой вывод о су­точ­ном по­треб­ле­нии жиров, бел­ков и уг­ле­во­дов 13-лет­ним маль­чи­ком можно сде­лать, если по подсчётам ди­е­то­ло­га в сред­нем за сутки он по­треб­ля­ет 90 г жиров, 90 г бел­ков и 359 г уг­ле­во­дов? В от­ве­те ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

1) По­треб­ле­ние жиров в норме.

2) По­треб­ле­ние бел­ков в норме.

3) По­треб­ле­ние уг­ле­во­дов в норме.

16 . В на­ча­ле 2010 г. в по­сел­ке было 730 жи­те­лей, а в на­ча­ле 2011 г. их стало 803. На сколь­ко про­цен­тов уве­ли­чи­лось число жи­те­лей по­сел­ка за год?

17 . Пол ком­на­ты, име­ю­щей форму пря­мо­уголь­ни­ка со сто­ро­на­ми 4 м и 10 м, тре­бу­ет­ся по­крыть пар­ке­том из пря­мо­уголь­ных до­ще­чек со сто­ро­на­ми 5 см и 20 см. Сколь­ко по­тре­бу­ет­ся таких до­ще­чек?

18 .  В ма­га­зи­не про­да­ют­ся фут­бол­ки пяти раз­ме­ров: XS, S, M, L и XL. Дан­ные по про­да­жам в ян­ва­ре пред­став­ле­ны на кру­го­вой диа­грам­ме.

Какое утвер­жде­ние от­но­си­тель­но про­дан­ных в ян­ва­ре фут­бо­лок не­вер­но, если всего в ян­ва­ре было про­да­но 150 таких фут­бо­лок?

1) Мень­ше всего было про­да­но фут­бо­лок раз­ме­ра XS.

2) Боль­ше по­ло­ви­ны про­дан­ных фут­бо­лок — фут­бол­ки раз­ме­ров M или L.

3) Мень­ше по­ло­ви­ны всех про­дан­ных фут­бо­лок — фут­бол­ки раз­ме­ров S или M.

4) Фут­бо­лок раз­ме­ра XL было про­да­но мень­ше 40 штук.

19 . В сред­нем из каж­дых 80 по­сту­пив­ших в про­да­жу ак­ку­му­ля­то­ров 76 ак­ку­му­ля­то­ров за­ря­же­ны. Най­ди­те ве­ро­ят­ность того, что куп­лен­ный ак­ку­му­ля­тор не за­ря­жен.

20 . Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия (t °C) в шкалу Фа­рен­гей­та (t°F), поль­зу­ют­ся фор­му­лой F = 1,8C + 32 , где C — гра­ду­сы Цель­сия, F — гра­ду­сы Фа­рен­гей­та. Какая тем­пе­ра­ту­ра по шкале Цель­сия со­от­вет­ству­ет 6° по шкале Фа­рен­гей­та? Ответ округ­ли­те до де­ся­тых.