- •Что изучает естествознание?
- •Тема 1.1.1. Механическое движение, его относительность.
- •2.Типы механического движения.
- •3.Законы Динамики Ньютона.
- •4.Значение закона Ньютона
- •Тема 1.1.2. «Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость»
- •Тема: 1.1.3. Импульс. Закон сохранения импульса и реактивное движение План:
- •Вариант 1.
- •«Импульс. Закон сохранения импульса.» Вариант 2.
- •Тема:1.1.4. Потенциальная и кинетическая энергия. Закон сохранения механической энергии. Работа и мощность.
- •3. Закон сохранения энергии
- •Тема1.1.5. Механические колебания. Период и частота колебаний. Механические волны. Свойства волн. План
- •2) Колебательное движение характеризуют амплитудой, периодом и частотой колебаний:
- •Тест по теме «Механические колебания» Вариант 1
- •Вариант 2
- •Часть 1
- •Тема 1.1.6. Звуковые волны. Ультразвук. Его использование в технике и в медицине.
- •Тема 1.2.1 История атомистических учений
- •Тема 1.2.2.«Наблюдения и опыты подтверждающие атомно-молекулярное строение вещества.
- •Тема 1.2.3. Тепловое движение. Температура как мера средней кинетической энергии частиц. План:
- •Тест Тепловые явления Вариант I
- •Тепловые явления Вариант II
- •Лабораторная работа №3 Измерение температуры вещества в зависимости от времени при изменениях агрегатных состояний Вариант 2
- •Тема 1.2.4. Объяснение агрегатных состояний вещества и фазовых переходов между ними на основе атомно-молекулярных представлений.
- •Агрегатные состояния вещества.
- •Тема1.2.5.: Закон сохранения энергии тепловых процессов. Необратимый характер тепловых процессов. Тепловые машины и их применения.
- •4. Энтропия и второй закон (второе начало) термодинамики.
- •Тема 1.2.6. Экологические проблемы, связанные с применением тепловых машин, и проблема энергосбережения.
- •Раздел 1.3 Электромагнитные явления
- •Тема 1.3.1 Электрические заряды и их взаимодействие. Электрическое поле. Проводники и изоляторы в электрическом поле.
- •Тема 1.3.2: Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление.
- •Тест по теме «Электромагнитные явления». Вариант 1
- •Тест по теме «Электромагнитные явления».
- •§ 12. Электрическое сопротивление
- •§ 14. Закон Ома
- •Лабораторная работа №4.
- •3. Какая величина равна отношению работы электрического поля при перемещении единичного положительного заряда к этому заряду?
- •10. Напряжение в электрической цепи 24 в. Найдите силу тока, если сопротивление цепи 12 Ом
- •11. Найдите верное соотношение:
- •13. Укажите верную формулу:
- •Тема 1.3.4 Тепловое действие электрического тока и закон Джоуля - Ленца.
- •Тест «Тепловые явления»
- •1).Какое движение молекул и атомов в твердом состоянии вещества называется тепловым движением?
- •9).Как изменится скорость испарения жидкости при повышении её температуры, если остальные условия останутся без изменения?
- •10). Какая температура принята за 100 0с ?
- •Тема 1.3.5. Магнитное поле тока и действие магнитного поля на проводник с током. Электродвигатель.
- •Магнитное поле тока 1 вариант
- •2 Вариант
- •Явление электромагнитной индукции
- •Тема 1.3.8. Электромагнитные волны. Радио связь и телевидение. Свет как электромагнитная волна. Интерференция и дифракция.
- •Вариант-1
Тема 1.2.2.«Наблюдения и опыты подтверждающие атомно-молекулярное строение вещества.
Масса и размеры молекул»
План
1.Общее сведение об атомно-молекулярном учении.
2.Основные положения атомно-молекулярного учения.
3.Размеры молекул.
4.Масса молекул.
1.Атомно-малекулярное учение развил и впервые применил в химии великий русский ученый Ломоносов. Сущность учения Ломоносова можно свести к следующим положениям. 1.Все вещества состоят из «корпускул» (так Ломоносов называл молекулы). 2.Молекулы состоят из «элементов» (так Ломоносов называл атомы). 3.Частицы – молекулы и атомы – находятся в непрерывном движении. Тепловое состояние тел есть результат движения их частиц . 4.Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ – из различных атомов. Атомистическое учение в химии применил английский ученый Джон Дальтон. В своей основе учение Дальтона повторяет учение Ломоносова. Вместе с тем оно развивает его дальше, поскольку Дальтон впервые пытался установить атомные массы известных тогда элементов. Однако Дальтон отрицал существование молекул у простых веществ, что по сравнению с учением Ломоносова является шагом назад. По Дальтону, простые вещества состоят только из атомов, и лишь сложные вещества – из «сложных атомов» ( в современном понимании – молекул). Отрицание Дальтоном существования молекул простых веществ мешало дальнейшему развитию химии. Атомно-молекулярное учение в химии окончательно утвердилось лишь в середине XIX в. Молекула – это наименьшая частица данного вещества, обладающая его химическими и химическим строением. Атом – наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства молекулы определяются ее составом и химическим строением. Атом – наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства молекулы определяются ее составом и химическим строением его атома. Отсюда следует определение атома, соответствующее современным представлениям : атом – это электронейтральная частица, состоящая из положительного заряженного атома ядра и отрицательно заряженных электронов. Согласно современным представлениям из молекул состоят вещества в газообразном и парообразном состоянии. В твердом состоянии из молекул состоят лишь вещества, кристаллическая решетка которых имеет молекулярную структуру .
2.Основные положения атомно-молекулярного учения можно сформулировать так:
Существуют вещества с молекулярным и немолекулярным строением.
Между молекулами имеются промежутки, размеры которые зависят от агрегатного состояния вещества и температуры. Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами еще меньше, поэтому они почти не сжимаются.
Молекулы находятся в непрерывном движении. Скорость движения молекул зависит от температуры. С повышением температуры скорость движения молекул возрастает.
Между молекулами существуют силы взаимного притяжения и отталкивания. В наибольшей степени эти силы выражены в твердых веществах, в наименьшей - в газах.
Молекулы состоят из атомов, которые, как и молекулы, находятся в непрерывном движении.
Атомы одного вида отличаются от атомов другого вида массой и свойствами.
При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются.
У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решето к находятся молекулы. Связи между молекулами, расположенными в узлах кристаллической решетки, слабые и при нагревании разрываются. Поэтому вещества с молекулярным строением, как правило, имеют низкие температуры плавления.
У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие частицы. Между этими частицами существуют сильные химические связи, для разрушения которых требуется много энергии. Поэтому вещества с немолекулярным строением имеют высокие температуры плавления.
Объяснение физических и химических явлений с точки зрения атомно-молекулярного учения. Физические и химические явления получают объяснение с позиций атомно-молекулярного учения. Так, например, процесс диффузии объясняется способностью молекул (атомами, частицами) другого вещества. Это происходит потому, что молекулы (атомы, частицы) находятся непрерывно движении и между ними имеются промежутки. Сущность химических реакций заключается в разрушении химических связей между атомами одних веществ и в перегруппировке атомов с образованием других веществ.
Многие опыты показывают, что размер молекулы очень мал.
Линейный размер молекулы или атома можно найти различными способами.
Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.
Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов молекул намного больше. Например, размер молекулы белка составляет 43*10-8. Линейные размеры сложных атомов и молекул намного больше.
Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твердых телах, так как атомы по своим размерам не имеют четких границ. То есть атомный радиус - это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).
Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.
Лекция 10.
