- •Предисловие
- •Введение
- •1. Механика
- •1.1. Основные положения, определения и допущения в разделе «Механика»
- •1. Закон сохранения массы
- •2. Закон сохранения импульса
- •3. Закон сохранения энергии
- •1.2. Задачи качественного характера
- •В прыжке
- •2. Молекулярная физика и Термодинамика
- •2.1. Основные положения, определения и допущения в разделе «Молекулярная физика и термодинамика»
- •2.2. Задачи качественного характера
- •3. Свойства жидкостей, газов и твердых тел
- •3.1. Основные положения, определения и допущения в разделе «Свойства жидкостей, газов и твердых тел»
- •Поверхностное натяжение
- •Тепловое расширение твердых тел
- •3.2. Задачи качественного характера
- •4. Электростатика
- •4.1. Основные положения, определения и допущения в разделе «Электростатика»
- •Закон сохранения электрических зарядов
- •Принцип суперпозиции полей
- •Воздействие на человека электростатических полей
- •4.2. Задачи качественного характера
- •Пример из истории
- •Пример современных технологий Емкостные сенсорные экраны
- •5. Постоянный и переменный электрический ток
- •5.1. Основные положения, определения и допущения в разделе «Постоянный и переменный электрический ток»
- •Электрический ток в металлах
- •Электрический ток в жидкостях
- •Переменный электрический ток
- •Воздействие на человека электрического постоянного и переменного тока
- •Род и частота тока
- •Сопротивление цепи человека электрическому току
- •Продолжительность действия тока
- •Напряжения прикосновения и токи, протекающие через тело человека при нормальном (неаварийном) режиме электроустановки
- •Воздействие постоянного тока на организм человека
- •Воздействие переменного тока на организм человека
- •5.2. Задачи качественного характера
- •Пример современных технологий Катодная защита нефтепровода от коррозии.
- •6. Магнитостатика
- •6.1. Основные положения, определения и допущения в разделе «Магнитостатика»
- •Вещества в магнитном поле
- •6.2. Задачи качественного характера
- •7. Колебания и волны
- •7.1. Основные положения, определения и допущения в разделе «Колебания и волны. Звук»
- •Механические волны
- •Ультразвук
- •Инфразвук
- •Вредное воздействие шума на человека
- •7.2.Задачи качественного характера
- •8. Электромагнитные колебания и волны
- •8.1. Основные положения, определения и допущения в разделе «Электромагнитные колебания и волны»
- •Радиоволны
- •Световые волны
- •Вредное воздействие ионизирующих излучений на человека
- •8.2.Задачи качественного характера
- •9. Оптика
- •9.1. Основные положения, определения и допущения в разделе «Оптика»
- •Фотометрические величины
- •Длины волн частотных диапазонов
- •9.2. Геометрическая и волновая оптика
- •Погрешности оптических систем
- •Практикум
- •Варианты к заданию 1 («Акробат»)
- •Варианты к заданию 2 («Потеря равновесия при ремонте крыши»)
- •Варианты к заданию 3
- •Варианты к заданию 4
- •Варианты к заданию 5
- •Справочный материал Коэффициенты трения скольжения для различных материалов
- •Плотности веществ
- •Коэффициент линейного теплового расширения для некоторых распространенных материалов
- •Диэлектрические проницаемости веществ
- •Удельное сопротивление при 20 0с и температурный коэффициент сопротивлении металлов и сплавов
- •Электрохимические эквиваленты
- •Скорость распространения звука в различных средах, м/с
- •Показатель преломления различных веществ относительно воздуха
- •Коэффициент отражения от образцов разной цветности
- •Библиографический список
- •Н.А. Леонова, т.Т. Каверзнева, а.И.Ульянов техносферная безопасность в примерах и задачах по физике Учебное пособие
- •195251, Санкт-Петербург, Политехническая ул., 29.
Длины волн частотных диапазонов
Таблица 14.
Наименование частотного диапазона |
Длина волны, нм |
1 |
2 |
Радиочастотный диапазон |
Более 100 000 |
Далекая инфракрасная область |
100 000 - 10 000 |
Инфракрасная область |
10 000 - 760 |
Видимая (оптическая) область |
760 - 400 |
Ультрафиолетовая область |
400 - 120 |
Крайняя ультрафиолетовая область |
120 - 10 |
Низкоэнергетическое рентгеновское излучение |
10 – 0,1 |
Высокоэнергетическое рентгеновское излучение |
Менее 0,1 |
По своей природе солнечный спектр представляет собой электромагнитные волны длиной от 380 до 760 нм. Наше зрение обладает наибольшей чувствительностью к излучению с длиной волны 555 нм (желто-зеленый цвет), которая уменьшается к границам видимого спектра. В верхних слоях земной атмосферы кислород и озон полностью поглощают излучения с длиной волны менее 290 нм. Видимое и преимущественно инфракрасное излучение поглощается кислородом и водяным паром избирательно. Остальной диапазон излучения пропускается атмосферой и доходит до поверхности Земли, частично ослабляясь за счет воздуха, пыли и водяных капель. Доходящее до нас солнечное излучение зависит от многих факторов: климата, погоды, географических координат, сезона года, рельефа местности, запыленности и загазованности воздушного бассейна и др.
9.2. Геометрическая и волновая оптика
Оптика традиционно делится на следующие разделы:
1. Геометрическая (или лучевая) оптика. Этот раздел оптики исторически сформировался первым. Геометрическая оптика изучает законы распространения оптического излучения и формирования изображений предметов с помощью оптических систем на основе представления о световом луче как о прямой линии, не интересуясь природой самого света. Законы геометрической оптики справедливы при условии, что размеры предметов много больше длины волны света; среда, в которой распространяется свет, оптически однородна, а свойства ее не зависят от интенсивности света.
2. Физическая оптика изучает вопросы, связанные с процессами испускания света, природой света и световых явлений. К ним, в частности, относятся следующие явления:
интерференция – это перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности;
дифракция света – явление, которое проявляет себя, как отклонение от законов геометрической оптики при распространении волн;
тепловое излучение – это электромагнитное излучение, возникающее за счёт внутренней энергии тела;
люминесценция – нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Она привела к идее о возможности создания оптических квантовых генераторов (лазеров).
Создание лазеров, в свою очередь, послужило стимулом для развития нелинейной оптики — раздела физической оптики, в котором рассматривается взаимодействие вещества со светом большой интенсивности, при котором свойства вещества зависят от интенсивности света, т е. оно перестает быть оптически однородным и перестают работать законы геометрической оптики.
Благодаря лазерам стало возможным развитие голографии, которая сейчас используется, начиная с музеев (демонстрация голограмм ценных экспонатов) до заводов, где голографические методы применяются для выявления дефектов и напряжений деталей машин.
3. Физиологическая оптика изучает строение глаза человека как составной части всего аппарата зрения, а также и все остальное, что относится к механизму зрения. По результатам исследований, проводимых в этой области, строится теория зрения, а также теория восприятия света и цвета. Достижения физиологической оптики используются в медицине, физиологии, технике, при разработке различных устройств – от очков до телевидения.
