Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория эволюции методичка. к Лабораторным Заданиям.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.56 Mб
Скачать
  1. Молекулярно-генетический уровень жизни

Для нормального жизненного цикла любому организму необходим определенный набор основных химических элементов. Этот набор включает в себя три группы элементов: макроэлементы, микроэлементы и ультрамикроэлементы.

К макроэлементам, которые называют, органогенами относятся четыре элемента – углерод, кислород, азот и водород. Эти элементы составляют основную массу органического вещества клетки (95–99%).

К макроэлементам относят также калий, натрий, кальций, магний, фосфор, серу, хлор и железо, количество которых в клетке колеблется от десятых до сотых долей процента (1,9%).

Микроэлементами называют такие элементы, которые присутствуют в живых тканях в очень малых концентрациях (0,001% до 0,000001%). Эту группу составляют: марганец, железо, кобальт, медь, цинк, ванадий, бор, алюминий, кремний, молибден, йод (.01%). Входят в состав биологически активных веществ – ферментов, витаминов, гормонов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Эту группу составляют золото, уран, радий и др.

Таким образом, для нормальной жизнедеятельности живая клетка нуждается в 24 природных химических элементах, каждый из которых имеет свое назначение, всего в клетках обнаружено 80 элементов.

Основными органическими веществами клетки являются углеводы, липиды, аминокислоты, белки, нуклеиновые кислоты.

К углеводам относят соединения углерода, которые подразделяют на три группы сахаридов. Углеводы играют важную роль в жизни организмов: они являются компонентом соединительной ткани позвоночных животных, обеспечивают свертывание крови, восстановление поврежденных тканей, образуют стенки растений, бактерий, грибов и т. д.

Липиды – разнообразные группы водоотталкивающих соединений, большая часть липидов представляет собой сложные эфиры трехатомного спирта, глицерина и жирных кислот, т. е. жиры. Жиры служат источником энергии и воды для клетки и организма в целом, кроме того они участвуют в терморегуляции организма, создавая теплоизолирующий жировой слой. Другие виды липидов выполняют защитную функцию, входя в состав наружного скелета насекомых, покрывая перья и шерсть.

Аминокислотами называют соединения, имеющие в своем составе карбоксильную группу и аминогруппу. Всего в природе встречается более 170 аминокислот. В клетках они выполняют функцию строительного материала для белков. Однако в составе белков встречаются только 20 аминокислот. Большинство аминокислот производится растениями и микроорганизмами. Однако у некоторых животных отсутствует часть ферментов, необходимых для синтеза аминокислот, поэтому они должны получать некоторые аминокислоты с пищей. Такие кислоты называются незаменимыми. Для человека восемь кислот незаменимы, а еще четыре заменимы только условно. Важнейшим свойством аминокислот является их способность вступать в реакцию полконденсации с образованием полимерных цепей – полипептидов и белков.

Белки являются главным строительным материалом для клетки. Они представляют собой сложные биополимеры, элементами которых выступают мономерные цепи, состоящие из различных сочетаний двадцати аминокислот. В живой клетке белков больше, чем других органических соединений (до 50% сухой массы).

Большинство белков выполняют функцию катализаторов (ферментов). Также белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения – результат взаимодействия молекул белков, функция которых заключается в координации движения. Есть белки – антитела, функцией которых является защита организма от вирусов, бактерий и т. д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, которые называются гормонами, управляют ростом клеток и их активностью.

Довольно хорошо изучены сегодня молекулярные основы обмена веществ в клетке.

Существует три основных типа обмена веществ (метаболизма):

Катаболизм, или диссимиляция – процесс расщепления сложных органических соединений, сопровождающийся выделением химической энергии при разрыве химических связей. Эта энергия запасается в фосфатных связях АТФ (аденозинтрифосфорной кислоты).

Амфоболизм – процесс образования в ходе катаболизма мелких молекул, которые затем принимают участие в строительстве более сложных молекул.

Анаболизм, или ассимиляция – разветвленная система процессов биосинтеза сложных молекул с расходованием энергии АТФ.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов – непосредственное преобразование самих генов, находящихся в хромосоме под воздействием внешних факторов. Факторами, вызывающими мутацию (мутагенами), являются: радиация, токсичные химические соединения, а также вирусы. При этом механизме порядок расположения генов в хромосоме не меняется.

Еще один механизм изменчивости – рекомбинация генов. Это создание новых комбинаций генов, располагающихся в конкретной хромосоме. При этом сами гены не меняются, а перемещаются с одного участка хромосомы на другой, или идет обмен генами между двумя хромосомами. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации, он остается неизменным. Этот механизм объясняет, почему дети лишь частично похожи на своих родителей – они наследуют признаки от обоих родительских организмов, которые сочетаются случайным образом.

Еще один механизм изменчивости был открыт лишь в 1950-е годы. Это – неклассическая рекомбинация генов, при которой происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами. Сегодня обнаружено несколько типов трансмиссивных генов. Среди них – плазмиды, представляющие собой двухцепочную кольцевую ДНК. Из-за них после длительного использования каких-либо лекарств наступает привыкание к этим лекарствам, и они перестают действовать. Патогенные бактерии, против которых действует наше лекарство, связываются с плазмидами, которые придают этим бактериям устойчивость к лекарству, и бактерии перестают его замечать.

Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов. Возможность использования таких элементов человеком привела к появлению новой науки – генной инженерии, целью которой является создание новых форм организмов с заданными свойствами. При этом конструируются новые, не существующие в природе сочетания генов с помощью генетических и биохимических методов. Для этого видоизменяется ДНК, которая кодируется для производства белка с нужными свойствами. На этом базируются все современные биотехнологии.