- •Методические указания
- •1 Методы планирования экспериментов
- •1.1 Основные определения и понятия
- •1.2 Планирование первого порядка
- •1.2.1 Выбор основных факторов и их уровней
- •1.2.2 Планирование эксперимента
- •1.2.3 Определение коэффициентов уравнения регрессии
- •1.2.4 Статистический анализ результатов эксперимента
- •1.2.5 Дробный факторный эксперимент
- •2 Регрессионный анализ
- •2.1 Проверка адекватности модели
- •2.2 Проверка значимости коэффициентов уравнения регрессии
- •3 Пример разработки математической модели
- •4 Планирование экспериментов при поиске оптимальных условий
- •4.1 Метод крутого восхождения
- •5 Задание к выполнению курсовой работы
- •1 Методы планирования экспериментов 1
- •1.1 Основные определения и понятия 1
- •3 94026 Воронеж, Московский просп., 14
4.1 Метод крутого восхождения
Известно, что кратчайший, наиболее короткий путь — это движение по градиенту, т.е. перпендикулярно линиям равного уровня, на которых функция отклика принимает постоянные значения y(x1; x2, ..., xk)=B. В связи с этим при оптимизации процесса рабочее движение целесообразно совершать в направлении наиболее быстрого возрастания функции отклика, т.е. в направлении градиента функции y.
Существуют различные модификации градиентного метода, одним из них является метод крутого восхождения. Сущность этого метода также рассмотрим на примере двухфакторной задачи (рис.4.3).
Рисунок 4.3 – Процедура оптимизации методом крутого восхождения
В этом случае шаговое движение осуществляется в направлении наискорейшего возрастания функции отклика, т.е. grad y(x1; x2). Однако направление корректируют не после каждого следующего шага, а при достижении в некоторой точке на данном направлении частного экстремума функции отклика.
Пусть в окрестности точки М0 как центра плана поставлен ПФЭ 22. Координаты отдельных опытов соответствуют точкам 1-4. По результатам ПФЭ можно рассчитать коэффициенты линейного уравнения регрессии.
Градиент функции отклика в этой точке определяется как
⋅
(4.1)
где j ,i— единичные векторы в направлении координатных осей.
Следовательно, для движения по градиенту необходимо изменять факторы пропорционально их коэффициентам регрессии и в сторону, соответствующую знаку коэффициента. В процессе поиска двигаются в этом направлении до тех пор, пока не будет обнаружен локальный максимум (точка М1 на рис. 4.4). В точке последнего находят новое направление градиента (направление М1N), осуществляя опять же ПФЭ, и далее процедура повторяется. Стрелками на рис. 4.4 показана траектория движения к оптимуму.
Практически алгоритм сводится к следующей последовательности операций.
1. Планирование и постановка ПФЭ (или ДФЭ) в окрестности точки начального состояния xi0. Расчет коэффициентов bi линейной математической модели с целью определения направления градиента.
2. Расчет произведений biΔxi, где Δxi — интервалы варьирования факторов при ПФЭ (ДФЭ).
3.
Выбор базового фактора xi=xi0,
у которого
4. Выбор шага крутого восхождения для базового фактора ha.
Этот выбор производится на основании имеющейся априорной информации или с учетом опыта исследователя, технологических соображений или других критериев. Относительно выбора шага заметим, что слишком малый шаг потребует значительного числа опытов при движении к оптимуму, а большой шаг создает опасность проскакивания области оптимума.
5. Расчет шагов изменения других факторов по формуле
(4.2)
Это соотношение между величинами шагов изменения отдельных факторов обеспечивает движение по градиенту в факторном пространстве.
6. Составление плана движения по градиенту. Для этого в соответствии с определенными значениями шагов изменения факторов и их последовательным алгебраическим суммированием с основным уровнем в точке
находят координаты опытов 5, 6, 7, 8, 9, 10 (см.рис.4.4). Часть этих опытов полагают "мысленными". "Мысленный" опыт заключается в получении предсказанных (расчетных) значений функции отклика по линейному уравнению регрессии, что позволяет сократить объем реальных опытов, т.е. увеличить скорость продвижения к экстремуму. При "мысленном эксперименте" перевод координат в кодированную форму и подстановка их в уравнение модели объекта должна подтвердить действительное возрастание y. Обычно реальные опыты в начале движения из базовой точки вдоль направления градиента ставятся через 2-4 мысленных опыта. Другие опыты реализуют на практике, определяя последовательность значений y в направлении градиента. Из опытных данных находят положение локального экстремума (точка М1 на рис.4.4).
7. В окрестности локального экстремума ставят новую серию опытов (ПФЭ или ДФЭ) для определения новых значений коэффициентов уравнения регрессии и нового направления градиента (направление М1N на рис.4.4). В дальнейшем процедура повторяется до достижения следующего локального экстремума и так далее вплоть до определения окрестности координат максимума функции отклика, которая носит название почти стационарной области.
Признаком достижения этой области является статистическая незначимость коэффициентов bi. В почти стационарной области становятся значимы эффекты взаимодействия и квадратичные эффекты. Здесь требуется переходить от ДФЭ (если он использовался ранее) к ПФЭ, а если и этого окажется недостаточно, перейти от планов эксперимента первого порядка к планам второго порядка.
Очевидно, что в задачах, где требуется определить координаты не максимума, а минимума функции отклика, знаки коэффициентов bi следует поменять на обратные. В этом случае движение в факторном пространстве осуществляется по направлению, противоположному вектору градиента.
