- •Методические указания
- •1 Методы планирования экспериментов
- •1.1 Основные определения и понятия
- •1.2 Планирование первого порядка
- •1.2.1 Выбор основных факторов и их уровней
- •1.2.2 Планирование эксперимента
- •1.2.3 Определение коэффициентов уравнения регрессии
- •1.2.4 Статистический анализ результатов эксперимента
- •1.2.5 Дробный факторный эксперимент
- •2 Регрессионный анализ
- •2.1 Проверка адекватности модели
- •2.2 Проверка значимости коэффициентов уравнения регрессии
- •3 Пример разработки математической модели
- •4 Планирование экспериментов при поиске оптимальных условий
- •4.1 Метод крутого восхождения
- •5 Задание к выполнению курсовой работы
- •1 Методы планирования экспериментов 1
- •1.1 Основные определения и понятия 1
- •3 94026 Воронеж, Московский просп., 14
2 Регрессионный анализ
Ниже излагаются основные положения регрессионного анализа, применение которого для обработки результатов наблюдений связано с меньшим числом ограничений, чем при корреляционном анализе. Как и корреляционный анализ, регрессионный анализ включает в себя построение уравнения регрессии, например, методом наименьших квадратов и статистическую оценку результатов. Если в регрессионном анализе расчет коэффициентов ведется теми же методами, например наименьших квадратов, то его теоретические предпосылки требуют других способов статистической оценки результатов.
При проведении регрессионного анализа примем следующие допущения:
1) входной параметр x измеряется с пренебрежимо малой ошибкой. Появление ошибки в определении y объясняется наличием в процессе не выявленных переменных и случайных воздействий, не вошедших в уравнение регрессии;
2) результаты наблюдений y1, y12,..., yi,..., yn над выходной величиной представляют собой независимые нормально распределенные случайные величины;
3) при проведении эксперимента с объемом выборки n при условии, что каждый опыт повторен m* раз, выборочные дисперсии S12,..., Si2,..., Sn2 должны быть однородны. При выполнении измерений в различных условиях возникает задача сравнения точности измерений. При этом следует подчеркнуть, что экспериментальные данные можно сравнивать только тогда, когда их дисперсии однородны. Это означает принадлежность экспериментальных данных к одной и той же генеральной совокупности. Напомним: однородность дисперсий свидетельствует о том, что среди сравниваемых дисперсий нет таких, которые с заданной надежностью превышали бы все остальные, т.е. была бы большая ошибка. При одинаковом числе параллельных опытов однородность дисперсии, как мы уже показали, можно оценить по критерию Кохрена, а для сравнения двух дисперсий целесообразно воспользоваться F-критерием Фишера.
После того как уравнение регрессии найдено, необходимо провести статистический анализ результатов. Этот анализ состоит в следующем: проверяется значимость всех коэффициентов и устанавливается адекватность уравнения.
2.1 Проверка адекватности модели
При моделировании приходится формализовать связи исследуемого явления (процесса), из-за чего возможна потеря некоторой информации об объекте. Иногда некоторые связи не учитываются. В то же время основное требование к математической модели заключается в ее пригодности для решения поставленной задачи и адекватности процессу. Регрессионную модель называют адекватной, если предсказанные по ней значения у согласуются с результатами наблюдений. Так, построив модель в виде линейного уравнения регрессии, мы хотим, в частности, убедиться, что никакие другие модели не дадут значительного улучшения в описании предсказания значений у. В основе процедуры проверки адекватности модели лежат предположения, что случайные ошибки наблюдений являются независимыми, нормально распределенными случайными величинами с нулевыми средними значениями и одинаковыми дисперсиями.
Сформулируем нуль-гипотезу Н0: "Уравнение регрессии адекватно".
Альтернативная гипотеза Н1: "Уравнение регрессии неадекватно".
Для проверки этих гипотез принято использовать F-критерий Фишера.
При этом общую дисперсию (дисперсию выходного параметра) S y2 cравнивают с остаточной дисперсией Sуост2.
Напомним, что
(2.1)
где l=k+1 – число членов аппроксимирующего полинома, а k – число факторов. Так, например, для линейной зависимости k=1, l=2.
В дальнейшем определяется экспериментальное значение F-критерия
(2.2)
который
в данном случае показывает, во сколько
раз уравнение регрессии предсказывает
результаты опытов лучше, чем среднее
Если
,
то уравнение регрессии адекватно. Чем
больше значение
превышает
для
выбранного α
и
числа степеней свободы m1=n-1,
m2=n-l,
тем эффективнее уравнение регрессии.
Рассмотрим также случай, когда в каждой i-й точке xi для повышения надежности и достоверности осуществляется не одно, а m* параллельных измерений (примем для простоты, что m* одинаково для каждого фактора). Тогда число экспериментальных значений величины у составит nΣ=n⋅m*.
В этом случае оценка адекватности модели производится следующим образом:
1)
определяется
– среднее из серии параллельных опытов
при x=xi,
где yij
–
значение параметра у при x=xi
в
j-м случае;
2)
рассчитываются значения параметра
по уравнению регрессии при x=xi;
3) рассчитывается дисперсия адекватности
где n – число значений xi; l – число членов аппроксимирующего полинома (коэффициентов bi), для линейной зависимости l=2;
4) определяется выборочная дисперсия Y при x=xi:
5) определяется дисперсия воспроизводимости
Число степеней свободы этой дисперсии равно m=n(m*-1);
6) определяется экспериментальное значение критерия Фишера
7) определяется теоретическое значение этого же критерия
где m1=n-l; m2= n (m*-1);
8)
если
,
то уравнение регрессии адекватно, в
противном случае – нет.
