Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика КР (Экология и природопользование).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.8 Mб
Скачать

Справочный материал

Функция F(x) называется первообразной для функции f(x), если (F(x))’=f(x).

Первообразная определена неоднозначно: если F(x) – первообразная для функции f(x), то F(x)+C – также первообразная для данной функции.

Множество всех первообразных для функции f(x) называется неопределенным интегралом и обозначается , где f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, С – произвольная постоянная (С = const), - знак операции интегрирования, d – знак операции дифференцирования.

Свойства неопределенного интеграла:

1. , где с = const.

2. .

3. .

Таблица 1 (неопределенных интегралов)

1.

2.

3. n ≠ –1;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10.

11. ;

12. (|x|<a, a≠0);

13. (a≠0);

14. (|x|≠a, a≠0);

15. .

Решение. а)

Чтобы найти данный неопределенный интеграл, воспользуемся методом разложения, который заключается в разложении подынтегральной функции на сумму функций и использовании свойств неопределенного интеграла 1 и 2.

= = =(св-во 2) =

= = (св-во 1) = =(используем формулы 3 и 4 из таблицы 1 н.и.)= =

= .

Ответ: = .

б) .

Данный интеграл вычисляется методом замены переменной (линейная замена). Обозначим выражение в скобках через t: 3х – 1 = t, тогда d(3х – 1)=dt => 3dх = dt => .

= = = (по формуле 3 из таблицы 1 н.и.) = = = = .

Ответ: = .

в) .

Здесь при вычислении интеграла используется также метод замены переменной (нелинейная замена).

= = = = = (используем формулу 4 из табл.1 н.и.) = = .

Ответ: = .

г) .

Для решения этого примера нужно использовать метод интегрирования по частям.

Формула интегрирования по частям имеет вид: .

Этот метод применяется для двух групп интегралов:

I. ; ; (где ). В этой группе в качестве u выбирают х, а остальная часть подынтегрального выражения принимается за dv ( ).

II. ; ; ; ; (где ). В этой группе .

В нашем случае интеграл относится к первой группе интегралов, поэтому в качестве u возьмем 5х – 2 (u = 5х – 2), а dv = e3xdx.

= =

(по формуле интегрирования по частям) = =

= .

Ответ: = .

13. Вычислить определенные интегралы:

а) ; б) .

Справочный материал

Для вычисления определенных интегралов используется формула Ньютона-Лейбница:

.

(где а – нижний предел интегрирования, b – верхний предел, F(x) – первообразная для функции f(x). Для нахождения первообразной F(x) используются те же методы, что и при вычислении неопределенных интегралов).

Решение.

а) = (формула 9 табл. 1 н.и.) = = .

Ответ: = .

б) Используем метод замены переменной: = =

= = (по формуле 3 табл.1 н.и.)= = = (т.к. ln1 = 0)= = .

Ответ: = .

Замечание: В отличие от метода замены для неопределенных интегралов, для определенных интегралов нет необходимости возвращаться к старой переменной интегрирования (х), если перейти к новым пределам интегрирования (в нашем примере старыми пределами были а = 0, b = , а новыми стали а = 1, b = ).

14. Бросают два игральных кубика. Какова вероятность того, что сумма цифр, выпавших на гранях кубика, будет четной и при этом хотя бы на одной из них появится цифра пять.

Решение. Каждый из шести исходов бросания одного кубика может сочетаться с каждым из шести исходов бросания другого кубика. Таким образом, общее число элементарных исходов испытания равно Благоприятствующими интересующему нас событию являются следующие пять исходов: Следовательно, искомая вероятность равна

15. Пользователь разыскивает нужную информацию в трех базах данных. Вероятности того, что информация содержится в й, й, й базе, соответственно равны: ; ; . Используя теоремы сложения и умножения вероятностей, найти вероятность того, что информация содержится: а) только в одной базе; б) хотя бы в двух базах; в) только во 2-й и 3-й базах.

Решение

а). Введем обозначения: событие информация содержится в й базе; событие информация не содержится в й базе; событие информация содержится только в одной базе; событие информация содержится хотя бы в двух базах; событие информация содержится только во 2-й и 3-й базах.

Вероятности событий равны .

Рассмотрим событие . Информация содержится только в одной базе тогда, когда:

она содержится в первой и не содержится во второй и третьей

или

она содержится во второй и не содержится в первой и третьей,

или

она содержится в третьей и не содержится во первой и второй.

Тогда событие можно представить так . Здесь первое слагаемое – это произведение наступившего события и двух других, не наступивших событий и . Аналогично определяются второе и третье слагаемое.

Применяя теорему сложения вероятностей для несовместных событий и теорему умножения для независимых событий, получим:

б) Событие наступает тогда, когда не наступает одно из двух событий:

информация не содержится ни в одной из баз (событие );

информация содержится только в одной базе (событие ).

Тогда

.

в) Событие легко выписывается через произведение вероятностей: , тогда

.

16. Вероятность появления события в каждом из независимых испытаний равна . Найти вероятность того, что в независимых испытаниях событие появится: а) точно раз; б) не менее раз и не более раз.

Решение

а) По условию , . Используем локальную теорему Муавра-Лапласа: , . Найдем . По таблице для функции Гаусса:

определим значение . Искомая вероятность

б) По условию , . Используем интегральную теорему Муавра-Лапласа:

,

где , , – интеграл Лапласа.

В нашем случае и . По таблице определим значение и . Следовательно, .

17. Средний рост солдат равен Предположим, что рост является нормально распределенной случайной величиной с параметрами , . Определить число солдат в группе, рост которых: а) больше 1,9м; б) между и .

Решение.

а) Для решения воспользуемся формулой:

Подставив , получаем:

.

По таблице находим .

Следовательно, Таким образом, доля солдат с ростом выше 1,9м равна 4,56%. То есть, среди солдат ожидаемое число солдат с ростом выше 1,9м будет равно

б) Для решения воспользуемся формулой:

Подставив , получаем:

.

По таблице находим

Следовательно, Таким образом, доля солдат с ростом от 1,75 до 1,85м равна 68,26%. Таким образом, среди солдат ожидаемое число солдат с интересующим нас ростом будет равно

36