- •1. Нод целых чисел. Алгоритм Евклида.
- •2. Расширенный алгоритм Евклида. Коэффициенты Безу (линейное разложение нод)
- •3. Взаимно простые числа. Критерий взаимно простых чисел. Свойства взаимно простых чисел.
- •4. Простые числа. Бесконечность множества простых чисел.
- •5. Основная теорема арифметики.
- •6. Сравнения и классы вычетов. Операции (сложение, вычитание, умножение) с классами вычетов.
- •7. Поле комплексных чисел. Операции над комплексными числами в алгебраической форме записи.
- •8. Тригонометрическая форма записи и геометрическая интерпретация комплексных чисел. Умножение и деление комплексных чисел в тригонометрической записи. Формула Муавра.
- •9. Извлечение корня натуральной степени из комплексных чисел.
- •10. Бинарная алгебраическая операция. Ассоциативность. Коммутативность. Полугруппа. Примеры полугрупп. Нейтральный элемент в полугруппе. Симметричные элементы в полугруппе.
- •11. Группа. Примеры групп. Обратные элементы в группе.
- •12. Кольцо. Примеры колец. Мультипликативное свойство нуля. Правило знаков при умножении. Дистрибутивность при вычитании. Лемма о сокращении.
- •13. Поле. Примеры числовых полей. Делители нуля в поле.
- •14. Кольцо вычетов. Необходимое и достаточное условие, при котором кольцо вычетов является полем.
- •15. Изоморфизм групп, колец и полей.
- •16. Кольцо многочленов. Деление с остатком. Делимость.
- •17. Наибольший общий делитель многочленов. Алгоритм Евклида.
- •18. Расширенный алгоритм Евклида для многочленов. Коэффициенты Безу (линейное разложение нод).
- •19. Взаимно простые многочлены. Критерий взаимно простых чисел. Свойства.
- •20. Неприводимые многочлены над полем. Существование и единственность разложения многочленов на неприводимые множители.
- •21. Освобождение многочлена от кратных множителей.
- •22. Деление многочлена на линейный множитель. Теорема Безу. Схема Горнера
- •23. Корни многочлена. Кратность корня. Производная многочлена. Корни производной.
- •25. Лемма о старшем члене.
- •26. Доказательство основной теоремы алгебры.
- •27. Разложение многочлена на линейные множители над полем комплексных чисел. Разложение на линейные и квадратичные множители многочлена с вещественными коэффициентами.
- •28. Формулы Виета.
- •29. Интерполяционный многочлен. Его существование и единственность. Интерполяционный многочлен в форме Лагранжа.
- •30. Поиск рациональных корней многочлена с целыми (рациональными) коэффициентами.
- •31. Примитивные многочлены. Лемма Гаусса. Эквивалентность неприводимости многочленов над полемрациональных и кольцом целых чисел.
- •32. Признак Эйзенштейна неприводимости многочленов над кольцом целых чисел.
- •33. Алгоритм Кронекера разложения многочлена над кольцом целых чисел.
- •35. Деление отрезка в заданном отношении.
- •36. Скалярное произведение геометрических векторов. Его свойства. Выражение скалярного произведения через координаты в ортонормированном базисе.
- •37. Векторное произведение. Его свойства. Выражение векторного произведения через координатывекторов в ортонормированном базисе.
- •38. Смешанное произведение. Его свойства. Выражение смешанного произведения через координаты векторов.
12. Кольцо. Примеры колец. Мультипликативное свойство нуля. Правило знаков при умножении. Дистрибутивность при вычитании. Лемма о сокращении.
Кольцом называется непустое множество K, на котором заданы две бинарные алгебраические операции, называемые сложением и умножением, причем относительно сложения K является абелевой группой (аддитивная группа кольца) и операции связаны законами дистрибутивности, т. е. для любых a, b, c из K 1) (a + b)c = ac + bc; 2) a(b + c) = ab + ac.
Примеры колец: 1) Числовые кольца Z, Q, R, C + и * -ассоц. и коммут. с единицей. Кольца Q, R, C являются полями. Множество N кольцом не является. 2) Кольцо nZ целых чисел, кратных заданному числу n, + и *. Оно ассоц. и коммут., при n ≥ 2 - без единицы. 3) Кольцо Zn вычетов по модулю n - коммут. и ассоц., обладает единицей.
Утв.: Мультипликативные свойства нуля. Для любых элементов a, b, c кольца K верно a0 = 0a = 0.
Док-во: Имеем aa + a0 = a(a + 0) = aa, откуда получаем, что
a0 = aa − aa = 0. Аналогично показывается, что 0a = 0.
Утв.: «Правило знаков» при умножении. Для любых элементов a, b, c кольца K верно (−a)b = a(−b) = −(ab); (−a)(−b) = ab.
Док-во: Докажем, например, что (−a)b = −(ab). Остальные свойства доказываются аналогично. Имеем ab + (−a)b = (a−a)b = 0b = 0, т. е. (−a)b противоположен элементу ab.
Утв.: Дистрибутивность при вычитании. Для любых элементов a, b, c кольца K верно (a−b)c = ac−bc; a(b−c) = ab−ac.
Док-во: Имеем (a − b)c = (a + (−b))c = ac + (−b)c = ac + (−bc) = ac − bc. Второе равенство доказывается аналогично.
Утв.: Лемма о сокращении. Пусть кольцо K не содержит делителей нуля. Если a, b, c — элементы кольца K, причем a<>0, то из каждого условия: ab = ac и ba = ca следует b = c.
Док-во. Если ab = ac, то a(b − c) = 0. Так как в кольце K нет делителей нуля и a<>0, то b − c = 0, откуда b = c. Если ba = ca, то рассуждения аналогичны.
13. Поле. Примеры числовых полей. Делители нуля в поле.
Кольцо F называется полем, если множество его ненулевых элементов, F \ {0}, непусто и образует абелеву группу. Эта группа называется мультипликативной группой поля. Из определения следует, что любое поле содержит по крайней мере 2 элемента: 0 и 1. Если F — поле и F′ ⊆ F, причем F′ само является полем относительно тех же операций сложения и умножения, тогда F′ называется подполем поля F.
Примеры: Числовые кольца Q, R, C с обычными операциями сложения и умножения являются полями. Кольцо Z полем не является.
Утв.: Поле не имеет делителей нуля.
Док-во: Пусть поле F обладает делителями нуля, т. е. ab = 0 для некоторого a <> 0 и некоторого b <> 0. Таким образом, F \ {0} не замкнуто относительно операции умножения, следовательно, не образует группу, т. е. F полем не является.
14. Кольцо вычетов. Необходимое и достаточное условие, при котором кольцо вычетов является полем.
15. Изоморфизм групп, колец и полей.
Пусть G — группа с операцией º, а G′ — группа с операцией ∗. Взаимно однозначное соответствие ϕ : G → G′ называется изоморфизмом, если для любых a и b из G ϕ(a º b) = ϕ(a) ∗ ϕ(b), т. е. результату операции с элементами группы G соответствует результат операции с образами этих элементов. Описанное выше свойство, выполненное для всех элементов a и b из G, называется свойством сохранения операции. Если между группами G и G′ существует изоморфизм, то группы называются изоморфными.
Изоморфизм из G на G (изоморфизм на себя) называется автоморфизмом.
Аналогично понятию изоморфизма групп вводится понятие изоморфизма колец и изоморфизма полей, но свойство сохранения нужно потребовать от обеих операций: сложения и умножения.
Пусть K — кольцо (в частности, поле) с операцией сложения + и операцией умножения ·, а K′ — кольцо (в частности, поле) с операцией сложения ⊕ и операцией умножения ⊙. Взаимно однозначное соответствие ϕ : K → K′ называется изоморфизмом, если для любых a и b из K
Если между кольцами (полями) K и K′ существует изоморфизм, то они называются изоморфными.
