- •1. Нод целых чисел. Алгоритм Евклида.
- •2. Расширенный алгоритм Евклида. Коэффициенты Безу (линейное разложение нод)
- •3. Взаимно простые числа. Критерий взаимно простых чисел. Свойства взаимно простых чисел.
- •4. Простые числа. Бесконечность множества простых чисел.
- •5. Основная теорема арифметики.
- •6. Сравнения и классы вычетов. Операции (сложение, вычитание, умножение) с классами вычетов.
- •7. Поле комплексных чисел. Операции над комплексными числами в алгебраической форме записи.
- •8. Тригонометрическая форма записи и геометрическая интерпретация комплексных чисел. Умножение и деление комплексных чисел в тригонометрической записи. Формула Муавра.
- •9. Извлечение корня натуральной степени из комплексных чисел.
- •10. Бинарная алгебраическая операция. Ассоциативность. Коммутативность. Полугруппа. Примеры полугрупп. Нейтральный элемент в полугруппе. Симметричные элементы в полугруппе.
- •11. Группа. Примеры групп. Обратные элементы в группе.
- •12. Кольцо. Примеры колец. Мультипликативное свойство нуля. Правило знаков при умножении. Дистрибутивность при вычитании. Лемма о сокращении.
- •13. Поле. Примеры числовых полей. Делители нуля в поле.
- •14. Кольцо вычетов. Необходимое и достаточное условие, при котором кольцо вычетов является полем.
- •15. Изоморфизм групп, колец и полей.
- •16. Кольцо многочленов. Деление с остатком. Делимость.
- •17. Наибольший общий делитель многочленов. Алгоритм Евклида.
- •18. Расширенный алгоритм Евклида для многочленов. Коэффициенты Безу (линейное разложение нод).
- •19. Взаимно простые многочлены. Критерий взаимно простых чисел. Свойства.
- •20. Неприводимые многочлены над полем. Существование и единственность разложения многочленов на неприводимые множители.
- •21. Освобождение многочлена от кратных множителей.
- •22. Деление многочлена на линейный множитель. Теорема Безу. Схема Горнера
- •23. Корни многочлена. Кратность корня. Производная многочлена. Корни производной.
- •25. Лемма о старшем члене.
- •26. Доказательство основной теоремы алгебры.
- •27. Разложение многочлена на линейные множители над полем комплексных чисел. Разложение на линейные и квадратичные множители многочлена с вещественными коэффициентами.
- •28. Формулы Виета.
- •29. Интерполяционный многочлен. Его существование и единственность. Интерполяционный многочлен в форме Лагранжа.
- •30. Поиск рациональных корней многочлена с целыми (рациональными) коэффициентами.
- •31. Примитивные многочлены. Лемма Гаусса. Эквивалентность неприводимости многочленов над полемрациональных и кольцом целых чисел.
- •32. Признак Эйзенштейна неприводимости многочленов над кольцом целых чисел.
- •33. Алгоритм Кронекера разложения многочлена над кольцом целых чисел.
- •35. Деление отрезка в заданном отношении.
- •36. Скалярное произведение геометрических векторов. Его свойства. Выражение скалярного произведения через координаты в ортонормированном базисе.
- •37. Векторное произведение. Его свойства. Выражение векторного произведения через координатывекторов в ортонормированном базисе.
- •38. Смешанное произведение. Его свойства. Выражение смешанного произведения через координаты векторов.
10. Бинарная алгебраическая операция. Ассоциативность. Коммутативность. Полугруппа. Примеры полугрупп. Нейтральный элемент в полугруппе. Симметричные элементы в полугруппе.
Пусть
A — непустое множество. Правило, которое
каждой упорядоченной паре элементов
из A ставит в соответствие элемент из
A, называется бинарной
алгебраической операцией на множестве
A (или
над A). Или
Ассоциативность:
для a, b, c из A
Коммутативность:
для a, b из A
Нейтральный:
Симметричный:
Пусть бинарная алгебраическая операция, заданная на A, ассоциативна, тогда A называется полугруппой. Если операция к тому же коммутативна, то полугруппа называется коммутативной полугруппой. Если множество A конечно, то |A| (число эл. в A) называется порядком полугруппы A.
Примеры коммутативных полугрупп: 1) N+ и Z+; 2) N* и Z *; 3) Z− (множество отрицательных целых чисел) +
Полугруппами не являются: N- (не б. алг. оп.), N /(не б. алг. оп.), Z - (отсутствие ассоциативности), Z /(не б. алг. оп.).
Утв.: Если полугруппа обладает нейтральным элементом, то он единственный.
Док-во: Пусть e1 и e2 — нейтральные элементы в M. Тогда
т.
е. e1
= e2.
Утв.: Пусть полугруппа содержит нейтральный элемент e. Если элементa имеет симметричный элемент a′, то других симметричных элементов у a нет.
Док-во: Пусть a′ и a′′ — симметричные элементы к a. Имеем
т. е. a′ = a′′.
11. Группа. Примеры групп. Обратные элементы в группе.
Полугруппа G с нейтральным элементом, в которой для каждого элемента существует симметричный, называется группой. Если операция коммутативна, то группа называется коммутативной или абелевой. Если множество G конечно, то |G| (число эл. в G)называется порядком группы G.
Согласно утверждениям в вопросе 10, нейтральный элемент группы единственен и для любого элемента группы симметричный элемент единственен.
Если групповая операция называется сложением (+), то группа называется аддитивной. В этом случае нейтральный элемент называют нулем (или нулевым эл-м) и обозначают 0. Элемент b, симметричный к a - противоположный ( −a). Если групповая операция называется умножением (× или ·), то группа называется мультипликативной. В этом случае нейтральный элемент называют единицей (или единичным эл-м) и обозначают e или 1. Элемент b, симметричный к a, называют обратным и обозначают a−1.
Примеры абелевых групп: 1) Z, Q, R, C +, причем Z; 2) Q∗, R∗, C∗× , где через F∗ обозначено множество ненулевых элементов в F; 3) множество Un (всех значений корня n-й степени из 1) ×; 5) V2, V3 +; 6) множество Zn классов вычетов по модулю n относительно +
Утв.: Пусть a, b — некоторые элементы из группы G. Тогда каждое из уравнений ax = b, ya = b имеет, причем единственное, решение в G: x = a−1b, y = ba−1.
Док-во: Проверим, что x = a−1b является решением уравнения ax = b: ax = a(a−1b) = (aa−1)b = eb = b. Для доказательства единственности решения, предположим, что нашлось два решения: x и x′. Тогда ax = b, ax′ = b, откуда ax = ax′.
Умножая слева обе части этого тождества на a−1, получаем
a−1(ax) = a−1(ax′), пользуясь ассоциативностью, получаем
(a−1a)x = (a−1a)x′, откуда ex = ex′, т. е. x = x′. Используя аналогичные рассуждения, легко проверить, что единственным решением уравнения ya = b является y=ba−1.
