- •Предисловие
- •Тема1. Введение в генетику.
- •Молекулярнвые основы наследственности
- •3.4. Уровни упаковки генетического материала эукариот
- •3.5. Первичные функции гена
- •3.6. Репликация молекулы днк
- •Классификация хромосом человека
- •Матричные процессы в клетке. Ген и хромосомы.
- •2.4. Формы размножения на клеточном уровне
- •2.4.1. Основные способы размножения
- •2.4.2. Клеточный и митотический циклы
- •2.4.3. Митоз
- •2.4.4. Мейоз
- •2.5. Размножение на организменном уровне
- •2.5.1. Гаметогенез
- •2.5.2. Особенности репродукции человека
- •3. Организация наследственного материала
- •3.1. Эволюция понятия "ген"
- •3.7. Генетический код и его свойства
- •(Генетический код)
- •3.8. Биосинтез белка в клетке
- •3.9. Свойства генов
- •3.10. Уровни организации наследственного материала
- •3.11. Классификация генов
- •3.12. Регуляция работы генов
- •3.12.1. Основные механизмы работы генов
- •3.12.3. Регуляция работы генов у эукариот
- •3.13. Цитоплазматическая наследственность
- •3.14. Генная инженерия
- •4. Закономерности наследования
- •4.1. Законы Менделя и условия их проявления
- •4.2. Взаимодействие генов
- •4.2.1. Взаимодействие аллельных генов
- •4.2.2. Взаимодействие генов
- •4.3. Сцепленное наследование
- •5. Изменчивость
- •5.1. Фенотипическая изменчивость
- •5.2. Генотипическая изменчивость
- •5.2.1. Основные понятия
- •5.2.2. Комбинативная изменчивость
- •5.2.3. Мутационная изменчивость
- •5.2.3.1. Мутации. Мутагенные факторы
- •5.2.3.2. Классификация мутаций
- •5.2.3.3. Геномные мутации
- •5.2.3.4. Хромосомные мутации
- •5.2.3.5. Генные мутации
- •5.2.3.6. Устойчивость и репарация генетического материала
- •5.2.3.7. Генетические концепции канцерогенеза
- •6. Биология и генетика пола
- •6.1. Первичные и вторичные половые признаки
- •6.2. Гоносомное наследование
- •6.3. Теории определения пола
- •6.4. Дифференцировка пола в процессе развития
- •6.5. Вариации определения пола
- •6.6. Формирование пола у человека
- •6.7. Хромосомные болезни, обусловленные
- •6.8. Соотношение полов
- •6.9. Гипотеза м. Лайон о женском мозаицизме
- •6.10. Проблема регуляции соотношения полов
- •6.11. Роль полов в эволюционном процессе
- •7. Основы онтогенетики
- •7.1. Реализация действия генов в онтогенезе
- •7.2. Генетические основы дифференцировки
- •7.3. Критические периоды эмбриогенеза
- •7.4. Влияние условий жизни матери
- •7.5. Постэмбриональный онтогенез
- •7.6. Периодизация постнатального онтогенеза у человека
- •7.7. Рост организмов
- •7.8. Хронологический и биологический возраст
- •7.9. Конституция и габитус человека
- •7.10. Старение и смерть
- •8. Генетика популяций
- •8.1. Популяционная структура вида
- •8.2. Отличительные признаки популяций человека
- •8.3. Генетические процессы в больших популяциях
- •8.4. Генетические процессы в малых популяциях
- •Раздел II основы медицинской генетики
- •9. Генетика человека
- •9.1. Человек как специфический объект генетического анализа
- •9.2. Основные методы исследования генетики человека
- •9.2.1. Клинико-генеалогический метод
- •9.2.2. Близнецовый метод
- •У монозиготных (мб) и дизиготных (дб) близнецов
- •9.2.3. Популяционно-статистический метод
- •9.2.4. Цитогенетический метод
- •9.2.5. Биохимические методы
- •9.2.6. Методы рекомбинантной днк
- •9.2.7. Методы генетики соматических клеток
- •9.2.8. Биологическое моделирование
- •9.2.9.Математическое моделирование
- •9.2.10. Экспресс-методы
- •9.2.11. Методы пренатальной диагностики
- •10. Моногенно наследуемые болезни человека
- •10.1. Нарушения аминокислотного обмена
- •10.2. Нарушения обмена углеводов
- •10.3. Нарушения обмена липидов
- •10.4. Нарушения обмена пуринов и пиримидинов
- •10.5. Нарушения обмена металлов
- •10.6. Нарушения свертывающей системы крови
- •10.7. Гемоглобинопатии
- •10.8. Другие моногенные заболевания
- •11. Хромосомные болезни человека
- •11.1. Трисомиия
- •11.2. Частичные трисомии
- •12. Врожденные пороки развития и болезни с наследственной предрасположенностью
- •12.1. Возможные нарушения при пороках развития
- •12.2. Болезни с наследственной предрасположенностью
- •Мультифакториальных болезней и врожденных пороков развития
- •13. Медико-генетическое консультирование
- •13.1. Цели и задачи медико-генетического консультирования
- •13.2. Этапы генетического консультирования
- •13.3. Показания для медико-генетического консультирования
- •13.4. Принципы терапии наследственной патологии человека
- •Краткий терминологический словарь
- •Рекомендуемая литература
- •Оглавление
- •Раздел I. Общая генетика
- •1. Основные этапы развития генетики
- •2. Цитологические основы наследственности
- •3. Организация наследственного материала
- •4. Закономерности наследования
- •5. Изменчивость
- •6. Биология и генетика пола
- •7. Основы онтогенетики
- •8. Генетика популяций
- •9. Генетика человека
2.5.2. Особенности репродукции человека
Особенности репродукции человека обусловлены его спецификой как биологического и социального существа.
Способность к репродукции становится возможной с наступлением половой зрелости, признаками которой являются первые менструации у девочек (с 12-15 лет) и поллюции у мальчиков (с 16-18 лет). Репродуктивная способность у женщин сохраняется до 40-45 лет, у мужчин - до старости. Продуцирование гамет у человека в отличие от большинства животных не связано с сезонами года. С момента полового созревания яичник женщины периодически (один раз в лунный месяц) выделяет обычно одну яйцеклетку, созревающую из овоцитов, заложенных на ранних стадиях эмбриогенеза. За весь репродуктивный период у женщины образуется около 400 яйцеклеток. Чем старше женщина, тем больший отрезок времени разделяет мейоз-I и мейоз-П и тем выше вероятность нарушения нормального формирования яйцеклетки. Поэтому у женщин с возрастом повышается вероятность рождения детей с генетическими дефектами, особенно связанными с нерасхождением хромосом.
Зрелый семенник мужчины непрерывно в течение всей жизни вырабатывает огромное количество сперматозоидов. Постоянное образование сперматозоидов практически не изменяет межмейотический отрезок времени, однако способствует накоплению генных мутаций, в результате чего возраст отцов не влияет на частоту рождения детей с хромосомными болезнями, но способствует увеличению у потомства наследственной патологии, обусловленной генными мутациями.
Как существо социальное человек может сознательно регулировать свою сексуальную жизнь и планировать деторождение. Репродукция человека зависит также от ряда социально-экономических факторов.
3. Организация наследственного материала
Ген — единица наследственности и изменчивости. По современным представлениям, ген — это участок молекулы ДНК, несущий информацию о синтезе определенного полипептида или нуклеиновой кислоты. Гены, определяющие развитие альтернативных признаков, называются аллельными (аллелями). Ген, преобладающий в паре аллелей, называется доминантным, а ген, подавляемый своей аллелью, — рецессивным.
Набор генов организма, которые он получает от своих родителей, называется генотипом.
Совокупность всех внешних и внутренних признаков организма, развивающихся на базе генотипа под воздействием факторов среды, называется фенотипом, а отдельный признак — феном.
3.1. Эволюция понятия "ген"
Отдельные сведения по наследованию признаков были известны с античных времен, однако закономерности их передачи впервые изложил Г. Мендель в 1865г. в работе "Опыты над растительными гибридами". Современники не придали значения его открытию. Понятия "ген" в то время еще не было, и Г. Мендель говорил о "наследственных факторах", содержащихся в половых клетках, природа которых была неизвестна.
В 1900 г. независимо друг от друга Г. де Фриз (Голландия), Э. Чермак (Австрия) и К. Корренс (Германия) заново открыли законы Менделя. Этот год и считается годом рождения генетики как науки. В 1902 г. Т. Бовери, Э. Вильсон и Д.Сеттон высказали предположение о связи наследственных факторов с хромосомами. В 1906 г. У. Бэтсон ввел термин "генетика", а. в 1909 г. В. Иогансен — термин "ген". В 1911 г. Т. Морган с сотрудниками сформулировали основные положения хромосомной теории наследственности. Они показали, что гены расположены в определенных локусах хромосом в линейном порядке, поэтому геном стали считать участок хромосомы, ответственный за проявление определенного признака.
В начале XX в. господствовало представление о стабильности и неизменяемости генов (А. Вейсман, У. Бэтсон), а если изменения и происходили (Г. де Фриз), то самопроизвольно, независимо от влияния среды. Это ошибочное мнение было опровергнуто получением индуцированных мутаций Г.А. Надсоном и Г.С. Филипповым (1925) на грибах, Г. Меллером (1927) на дрозофиле и И. Л. Стадлером (1928) на кукурузе.
В это же время существовало представление о неделимости гена. Однако в конце 50-х годов С. Бензер показал, что ген является дискретной единицей. При выполнении основной функции — программировании синтеза белка — ген выступает как целостная единица, изменение которой вызывает перестройку структуры белковой молекулы. Эту единицу Бензер назвал цистроном. По величине цистрон примерно равен гену. Дискретность гена заключается в наличии у него субъединиц. Элементарная единица изменчивости гена, единица мутации, названа мутоном, а единица рекомбинации (обмен участками гомологичных хромосом при кроссинговере в профазе мейоза-1) — реконом.
В 20-е годы было установлено, что хромосомы состоят из белка и нуклеиновых кислот. В 1927 г. Н.К. Кольцов предположил, что функции генов выполняют белковые молекулы. Он писал: "Если мы признаем, что самой существенной частью хромосомы являются длинные белковые молекулы, состоящие из нескольких десятков или сотен атомных групп радикалов, то моргановское представление о хромосоме как о линейном ряде генов получит ясную конкретную основу". Однако в дальнейшем было доказано, что носителями генетической информации являются нуклеиновые кислоты.
