- •1.1. Призабойная зона пласта
- •1.2. Конструкции скважин
- •1.3. Конструкции забоев скважин
- •Месторождения Самгои-Патардзеули (Грузия)
- •Средние значения коэффициентов Пуассона для некоторых горных пород
- •1.3.1. Обоснование выбора конструкции забоя смешанного вида
- •1.3.2. Обоснование выбора конструкции
- •1.3.3. Обоснование выбора конструкции забоя для предотвращения выноса песка
- •1.4. Гидродинамическое
- •1.5. Воздействие на фильтрационные свойства пласта в околоскважинной зоне
- •1.5.1. Фильтрационная характеристика
- •1.5.2. Регулирование фильтрационных свойств пласта в околоскважинных зонах
- •Степень восстановления проницаемости
- •1.6. Движение жидкости и газа в системе «пласт - скважина».
- •1.7. Виды ремонтов нефтяных
- •Общие положения
- •Принятые сокращения
- •Виды ремонтов
- •Капитальный ремонт скважин
- •Виды капитальных ремонтов скважин
- •3.2 Текущий ремонт скважин
- •Виды текущего ремонта скважин
- •3.3 Повышение нефтеотдачи пластов
- •2.1. Природа нарушения
- •2.2. Факторы, способствующие
- •1. Факторы, вызывающие механическое загрязнение пзп:
- •2. Физико-литологические факторы,
- •3. Физико-химические факторы:
- •4. Термохимические факторы:
- •Нормы превышения гидростатического давления над пластовым
- •Восстановление проницаемости керна
- •Влияние буровых растворов на проницаемость керна
- •Уменьшение коэффициента продуктивности
- •Изменение газопроницаемости образцов после проникновения в них фильтрата цементного раствора
- •Буферные разделители
- •2.3. Жидкости глушения
- •Значения коэффициентов восстановления проницаемости искусственных кернов при обработке рабочими жидкостями на водной основе
- •2.4. Пены
- •2.5. Глушение и освоение скважин
- •2.5.1. Особенности глушения скважин
- •2.5.2. Деблокирование пласта
- •3.1. Технология удаления жидкости
- •Пенообразователи и их концентрации, рекомендуемые к применению при удалении воды из газовых скважин
- •Пенообразователи и их концентрации, рекомендуемые к применению при удалении воды и газового конденсата из газоконденсатных скважин
- •Антифризы и их концентрация в водных растворах
- •Концентрации, объемы рабочих растворов и виды применяемых пав
- •Состав новых пенообразователей
- •3.2. Технология удаления из скважин
- •Пенообразующие свойства сульфама
- •Потребная концентрация сульфама
- •3.3. Удаление жидкости из скважин
- •4.1. Назначение цементных мостов и
- •Допустимые депрессии и внутренние давления в обсадных колоннах
- •Ориентировочные значения [м] и [∆р] при установке мостов
- •4.2. Особенности выбора рецептуры
- •Программа исследования тампонажного раствора
- •4.3. Разрушение застойных зон поперечным
- •Бурильные эксцентрики
- •4.4. Оборудование для установки
- •Оборудование для установки цементных мостов
- •4.5. Методика расчета операций по
- •1. Определение необходимых объемов цементного
- •Величины коэффициентов, учитывающих потери тампонажного раствора на стенках труб и при смешении с буровым раствором
- •Допустимый градиент давления при определении высоты цементного моста
- •Допустимые касательные напряжения для определения обеспечения необходимой несущей способности моста
- •2. Определение высоты цементного моста
- •Расчет времени установки моста
- •5.1. Общие принципы ремонтно-изоляционных работ (рир) и последовательность
- •5.1.1. Терминология
- •5.1.2. Подготовка к рир
- •Основные размеры нкт для тампонажных и вспомогательных работ
- •5.1.3. Исследование скважины
- •Параметры исследования крепи скважины
- •5.1.4. Гидроаэродинамические методы поиска
- •5.2. Тампонажные работы при
- •5.2.1. Расчеты при проверке скважины
- •Выбор способа тампонирования по результатам исследования скважины и условиям формирования изоляционного экрана
- •5.2.2. Тампонирование под давлением
- •5.2.3. Расчет продолжительности
- •Расчет продолжительного тампонирования под давлением
- •5.2.4. Определение объема тампонирующей
- •5.2.5. Расчет давлений при вымыве
- •Максимальные значения реологических параметров наиболее широко применяемых цементных растворов
- •5.2.6. Расчет тампонирования под давлением
- •5.2.7. Расчеты при установке разделительных
- •Количественные показатели качества мостов в зависимости от технологических мероприятий
- •Расчетные коэффициенты
- •5.2.8. Расчет допустимой глубины
- •5.3. Техническая характеристика пакеров
- •Якоря для удержания пакеров на месте их установки
- •Пакеры типов пш и ппгм
- •Взрывные пакеры, спускаемые на кабеле
- •Пакеры гидравлические, механические, гидромеханические
- •Гидравлико-механические пакеры при тампонировании зон поглощения (ту 39-096-75)
- •Пакеры рукавные (ту 26-16-15-76)
- •Пакеры механические (ту 26-02-644-75, ту 26-02-213-77)
- •5.4. Вспомогательные тампонажные
- •5.4.1. Установка разделительных
- •5.4.2. Установка разделительных
- •5.4.3. Наращивание цементного стакана
- •5.4.4. Насыпка песчаных пробок в скважинах
- •5.4.5. Намыв наполнителей
- •5.4.6. Исправление негерметичности
- •5.5. Рир при ликвидации заколонных
- •5.6. Изоляция чуждых вод (газа)
- •5.7. Наращивание цементного кольца
- •5.8. Устранение негерметичности
- •5.8.1. Тампонирование негерметичных
- •5.8.2. Проведение рир при закачке
- •5.8.3. Проведение рир при закачке
- •5.8.4. Проведение рир при неустановленном
- •5.8.5. Проведение рир в перфорированной
- •5.8.6. Проведение рир в перфорированной
- •5.9. Ликвидация каналов негерметичности в стыковочных устройствах и муфтах ступенчатого цементирования
- •5.9.1. Изоляция сквозных дефектов обсадных колонн
- •5.10. Технологические приемы, рекомендуемые при тампонажных работах в скважинах
- •6.1. Виды и причины нарушения герметичности обсадных колонн
- •6.2. Способы и средства восстановления герметичности обсадных колонн
- •6.3. Диагностика состояния крепи скважин
- •6.3.1. Сущность и состояние проблемы диагностики крепи скважин в нашей стране и за рубежом
- •6.3.2. Состав и характеристики комплекса средств для диагностики крепи скважин, разработанного предприятием «кубаньгазпром»
- •Техническая характеристика длм-42
- •Техническая характеристика лпм-42
- •Техническая характеристика смаш-42
- •Техническая характеристика идк
- •6.3.3. Основные особенности диагностического комплекса, разработанного «кубаньгазпромом»
- •6.3.4. Технология комплексной оценки качества перфорации скважин
- •6.4. Технология ремонта обсадных колонн стальными пластырями
- •6.4.1. Основные технические требования и технологическая последовательность операций при ремонте обсадных колонн стальными пластырями
- •Технологическая последовательность операций ремонта обсадных колонн пластырями
- •6.4.2. Конструктивные параметры, материалы и средства изготовления пластыря
- •6.4.3. Поиск дефекта в обсадных колоннах
- •Устройство для снятия оттисков с внутренней поверхности обсадных колонн
- •Процесс получения отпечатка
- •6.4.5. Шаблонирование и ликвидация смятия обсадных колонн
- •6.4.6. Очистка внутренней поверхности обсадных колонн
- •6.4.7. Конструкция и принцип работы средств для спуска и установки пластырей в обсадных колоннах
- •6.4.8. Опрессовка отремонтированной обсадной колонны
- •6.4.9. Аварии при ремонте обсадных колонн
- •6.4.10. Выбор режимов ремонта обсадных колонн стальными пластырями
- •6.4.11. Перспективы дальнейшего совершенствования средств и технологии ремонта обсадных колонн пластырями и расширение области их применения
- •Установка пластыря на дефект обсадных колонн с постоянным его упором
- •Универсальный клапан
- •Установка пластыря после закачки тампонажного материала через дефект обсадной колонны в процессе одной спуско-подъемной операции
- •Установка пластыря гидравлическим давлением непосредственно на его внутреннюю поверхность
- •Установка пластыря из материала, обладающего эффектом «памяти формы»
- •Смена обсадных колонн
- •Увеличение долговечности обсадной колонны при ее проворачивании
- •Дополнительная герметизация эксплуатационной колонны в резьбовых соединениях путем довинчивания ее в скважине
- •Расчетные величины Мmах для 146-мм труб
- •7.1. Методы предупреждения
- •7.2. Химические методы удаления солеотложений из нкт
- •7.3.Применение покрытий для предотвращения солеотложений на трубах
- •7.4. Магнитные методы борьбы с отложениями солей
- •8.1. Условия образования и профилактика аспо
- •8.2. Расчет радиуса парафиновой кольматации пзп
- •8.3. Механические способы удаления аспо из скважины
- •8.4. Методы предупреждения формирования аспо в пзп
- •8.5. Тепловые методы удаления аспо из трубопроводов и призабойной зоны скважины
- •8.6. Химические методы очистки пзп от аспо
- •8.7. Зависимость растворимости аспо в газовом бензине от концентрации добавок оп-4. Время опыта:
- •8.7. Ингибирование как метод предотвращения или снижения скорости накопления аспо
- •8.8. Специальные покрытия поверхности труб для уменьшения интенсивности аспо
- •8.9. Термогазохимическое воздействие напзп
- •8.10. Применение магнитных полей для предупреждения отложений парафина при добыче нефти
- •8.11. Гидратообразование в газовых скважинах и борьба с ним
- •8.11.1. Понятие о гидратах
- •8.11.2. Образование гидратов в пзп, стволе скважин, газопроводе
- •8.11.3. Способы борьбы с гидратообразованием
- •9.1. Условия пескопроявлений и образования песчаных пробок в скважинах
- •9.2. Технологические методы снижения пескопроявлений в скважинах
- •9.3. Удаление песчаных пробок из скважин
- •9.4. Создание гравийных фильтров при заканчивании скважин
- •9.4.1. Фильтр-каркас гравийной набивки
- •Управляемая циркуляционная муфта
- •9 .4.3. Устройство с узлом перекрестных потоков (кроссовер)
- •Гравиесмесительная установка
- •Фильтровальная установка
- •9.4.6. Факторы, влияющие на формирование
- •Установка фильтра-хвостовика в скважине и намыв гравия за фильтр
- •Методы крепления призабойной зоны скважин
- •9.5.1. Контарен-2
- •9.5.2. Укрепление призабойной зоны пласта цементно-соляно-керамзитовой смесью
- •9.5.3. Цементно-карбонатная смесь
- •9.5.4. Крепление призабойной зоны смолопесчаными смесями
- •9.5.5. Крепление кавернозной призабойной зоны пласта вспененными смолами
- •9.5.6. Крепление призабойной зоны резолформальдегидной смолой сфж-3012
- •9.5.7. Сланцевый крепитель рыхлых пород пзп
- •9.5.8. Крепление призабойной зоны способом коксования нефти
- •10.1. Причины обводнения скважин и их классификация
- •10.2. Методы предупреждения обводнения пластов-коллекторов в процессе разработки месторождений
- •10.2.1. Неселективные методы ограничения притока пластовых вод
- •Органические и органоминеральные материалы для цементирования скважин
- •Латекс-цементные растворы в зарубежной практике
- •Гельцементные растворы в зарубежной практике
- •Прочность на сжатие камня на латекс-цементного раствора (на основе цемента класса а по ани)
- •Свойства латекс-цементного раствора (на основе цемента класса н по ани)
- •Период озц латекс-цементных растворов
- •10.2.2. Селективные методы ограничения притока пластовых вод
- •Плотность гельцементного раствора
- •Озц гельцементного раствора
- •Прочность на сжатие гельцементного камня
- •Нефтецементные растворы
- •Нефтецементные растворы за рубежом
- •10.3. Газоизоляционные работы
- •10.4. Ограничение водопритоков составами акор
- •11.1. Технология зарезки вторых стволов из эксплуатационной колонны
- •11.2. Установка цементного моста
- •11.3. Спуск и крепление клина-откло-нителя в колонне
- •Установка клина-отклонителя без ориентации по азимуту с опорой на мост (пробку) путем зацепления его плашек со стенкой обсадной трубы
- •Принцип действия ориентированного спуска инструмента при помощи меток и сумматоров
- •Установка клина-отклонителя цементированием его на опору
- •11.4. Спуск райбера и вырезка окна в эксплуатационной колонне
- •11.5. Технология бурения и крепления второго ствола скважины
- •11.6. Технология вскрытия продуктивных пластов путем зарезки второго ствола с применением пены
- •Наращивание инструмента
- •3. Геофизические исследования
- •Заканчивание скважин
- •12.1. Печать
- •12.2. Труболовка
- •Труболовка наружная типа м-1 (Румыния)
- •12.3. Метчики
- •Р ис. 12.9 Метчик бурильный универсальный мбу.
- •12.4. Колокола ловильные
- •12.5. Ловитель для ловли труб в скважине
- •12.6. Ерши и удочки
- •12.7. Ясс механический
- •Механические яссы румынского производства
- •12.8. Фрезеры и райберы
- •12.9. Вырезка труб
- •Техническая характеристика комбинированных труборезов
- •12.10. Ловля насосных труб и штанг, подземного оборудования и отдельных предметов
- •14.1. Основные принципы кислотной обработки скважин
- •14.1.1. Способы кислотной обработки
- •14.1.2. Виды соляно-кислотных обработок
- •14.1.3. Обработка скважин грязевой кислотой
- •14.1.4. Углекислотная обработка призабойных зон скважин
- •14.2. Гидравлический разрыв пластов
- •14.2.3. Технологические схемы гидроразрыва
- •14.3. Гидропескоструйная перфорация
- •14.4. Торпедирование скважин
- •14.5. Тепловые обработки пзп
- •14.5.1. Закачка в скважину нагретой нефти, нефтепродуктов или воды, обработанной поверхностно-активными веществами
- •14.5.2. Прогрев призабойной зоны паром
- •Порядок ликвидации скважин Категории скважин, подлежащих ликвидации
- •Литература
- •Оглавление
- •6. Ремонт обсадных колонн
- •7. Отложения минеральных солей в скважинах, способы
- •8. Предупреждение и ликвидация аспо и гидратообразо-
- •9. Пескопроявления в скважинах и борьба с ними . . . 360
- •10. Предупреждение и ограничение обводнения скважин 401
- •11. Забуривание новых стволов как способ ремонта сущест вующих скважин 455
Установка пластыря из материала, обладающего эффектом «памяти формы»
В настоящее время «память формы» обнаружена у широкого круга сплавов, принадлежащих к различным системам, в частности, у сплавов системы: Ti-Ni, Fe-Ni, Cu-Ai, Co-Ni, Ti-Ni-Co, Fe-Ni-Ti, Co-Al-Ni, Cu-Zn-Al….
Феноменология (умозрительное описание явления) эффекта памяти заключается в следующем. Материал в виде ленты, листа, проволоки и т. п., обладающий эффектом запоминания формы, пластически деформируют при температуре Тд выше температуры прямого мартенситного превращения Мн с целью придания ему определенной заданной формы и размеров, затем охлаждают до температур, обеспечивающих протекание (полное или частичное) мартенситного превращения и деформируют в этой температурной области до получения промежуточной, технологически требуемой формы. При нагреве выше температуры обратного мартенситного превращения Ак образец вновь восстанавливает заданную форму, которая была ему придана при температуре Тд>Мн.
Схематически этот эффект изображен на рис. 6.35.
На рис. 6.35, в показан процесс изменения формы поперечного сечения от цилиндрической заготовки пластыря до его установки в обсадной колонне при термоциклировании.
Эффект «памяти формы» проявляется в строго определенном для каждого сплава интервале температур. При этом начало и конец восстановления формы разделены по температуре несколькими градусами или десятками градусов. Изменяя массовое соотношение компонентов в сплаве, добавляя в него другие элементы, удается менять температуру проявления памяти в широких пределах.
Рис. 6.35. Схема устройства и интерпретации эффекта «памяти формы» пластыря
В настоящее время разработаны сплавы, в которых температуру «эффекта памяти» можно менять от -200 до Н-500°С, сохраняя при этом высокую точность восстановления первоначально заданной формы.
Отдельные сплавы с «памятью формы» обладают следующими уникальными свойствами: усилиями, восстанавливающими исходную форму; эффектом изменения формы с восстанавливающими эту форму усилиями; коррозионной стойкостью; высокой демпфирующей способностью; высоким уровнем внутреннего трения.
Сплавы, обладающие «памятью формы», имеют большие перспективы и в недалеком будущем смогут найти широкое применение при ремонтах скважин для восстановления герметичности обсадных колонн, перекрытия поглощающих и проявляющих пластов, перетоков и т. д.
Так, гофрированный пластырь, изготовленный из сплава, обладающего «памятью формы», без особых материальных и трудовых затрат по упрощенной технологии и с помощью недорогостоящего оборудования может быть спущен на канате к месту дефекта обсадной колонны. При создании на пластыре температуры обратного мартенситного превращения Ак пластырь примет первоначальную (круглую в поперечном сечении) форму и образует надежное контактное сцепление со стенкой ремонтируемого участка обсадной колонны.
Используя имеющиеся данные о так называемом эффекте обратной памяти в области металлов и сплавов, обладающих эффектом «памяти формы», нефтяники смогут извлекать из обсадной колонны пластырь после его износа, закрывать и открывать продуктивные пласты, регулировать приток продукции в скважины.
Для изготовления гофрированных пластырей подходит сплав с «памятью формы» на основе никелида титана, обладающий следующими свойствами:
Предел прочности, МПа ………………………..................................................1200 1900
Относительное удлинение, %..............................................................15 100
Относительная деформация при формовосстановлении, % ... .8—15
Степень восстановления исходной формы, %..............................95—100
Усилие, развиваемое при восстановлении формы, МПа ………До 800
Температурный интервал изменения формы, °С ……………От -200 до +150
Такой сплав коррозионно и износостоек, немагнитен, совместим с биологическими тканями, обладает высокой дефор-мативной способностью.
Пластыри из никелида титана наиболее экономичны и эффективны для применения в скважинах, содержащих сероводород и другие агрессивные среды.
Для восстановления первоначальной формы пластыря можно использовать электрический или химический способы, горячий воздух (газ), а при охлаждении — жидкий азот.
При электрическом нагреве применяют нагревательные элементы, а при химическом — выделение тепла при взаимодействии (реакции) двух или нескольких веществ, а также горячий воздух (газ).
Для реализации предлагаемого метода ремонта скважин с помощью пластыря из никелида титана или других сплавов требуется провести исследовательские работы и испытания, а также организовать промышленное изготовление гофрированных пластырей. Создание пластырей, обладающих «памятью формы», и устройств для их транспортировки в скважину имеет важное практическое значение.
Одним из вариантов устройства для транспортировки и установки пластыря, обладающего эффектом «памяти формы», является капсула (см. рис. 6.35, а). Устройство включает пластырь, перфорированную штангу, нагревательные элементы (ТЭНы), соединительные муфты и ограничительные упоры.
После спуска пластыря к месту дефекта по кабелю подается напряжение на нагревательные элементы. После достижения заданной температуры пластырь восстанавливает свою первоначальную цилиндрическую форму, сопрягаясь с обсадной колонной.
