
- •2. Наземные экосистемы как источник и сток парниковых газов.
- •3. Биологический цикл азота.
- •Азотфиксация
- •Нитрификация
- •Денитрификация
- •4. Таксономическое разнообразие микроорганизмов цикла азота, осуществляемые ими процессы и продукты реакций.
- •5. Условия протекания процессов в экосистемах.
- •6. Таксономическое разнообразие микроорганизмов цикла углерода, осуществляемые ими процессы и продукты реакций.
- •7. Условия протекания процессов в экосистемах.
- •Процесс разложения растительных остатков и формирование подстилки
- •Образование и разложение гумуса
- •Участие почв-х мо в разрушении и новообразовании минералов
- •8. Микробная трансформация углерода и азота в почвенных агрегатах.
- •9. Формирование анаэробных зон внутри почвенных агрегатов.
- •10. Влияние размера почвенных агрегатов на продукты микробного метаболизма.
- •11. Участие микроорганизмов в «парниковом эффекте».
- •17. Постулат Бейеринка, Правило Гаузе, Триада Гузева.
- •18. Экологические (функциональные) и филогенетические классификации почвенных микроорганизмов.
- •19. Вертикальная ярусность микробов и их функции в различных экосистемах (бгц).
- •20. Филогенетическая структура метаболически активных прокариот в пространственно-сукцессионном (вертикально-ярусном) ряду.
- •2. Свойства покоящихся клеток.
- •3. Пролиферативный и метаболический покой.
- •4. Репродуктивные покоящиеся формы микроорганизмов.
- •5. Этапы формирования покоящихся форм.
- •6. Механизмы катаболитной репрессии и репрессии конечным продуктом.
- •7. Роль микроорганизмов в формировании и разложении почвенного гумуса.
- •8. Автохтонная и зимогенная микрофлора.
- •9. Микробная популяция как многоклеточный организм.
- •10. Экологическая роль антибиотиков в почве.
- •11. Примеры микробных сукцессий в почве.
- •2. Полифазная таксономия.
- •3. Основные филумы домена Bacteria и Archaea, обнаруживающиеся в почве.
- •2. Строение бактериофагов и их геном.
- •3. Генетический аппарат эукариотических микроорганизмов (грибов).
- •4. Лизогения у бактерий. Специфическая трансдукция: особенности и механизмы.
- •5. Конъюгация у бактерий.
- •6. Сравнительные особенности процесса конъюгации у разных типов бактерий.
- •7. Плазмиды и мигрирующие элементы.
- •8. Биологическое значение плазмид и мигрирующих элементов в изменчивости и эволюции микроорганизмов.
- •9. Сообщества бактерий – биопленки: их структура, экспрессия бактериальных генов в состоянии биопленок.
- •Фототрофы
- •Хемосинтез
- •2. Миксотрофия.
- •4. Современные представления о роли микроорганизмов в образовании и разрушении глинистых (почвообразующих, вторичных) минералов.
- •5. Роль микроорганизмов в образовании и деградации гумусовых веществ, основные группы организмов, механизмы процессов.
- •6. Понятие о «затравочном» эффекте.
- •7. «Вторая (подземная) биосфера» принципы ее функционирования.
- •8. Микробное фракционирование стабильных изотопов в природе.
- •9. Основные методы изучения геохимической деятельности микроорганизмов.
- •10. Современные биогеотехнологии с использованием микроорганизмов.
- •2. Микроорганизмы и ксенобиотики.
- •3. Почвы, загрязненные нефтью и нефтепродуктами.
- •4. Биологическая индикация загрязнения почвенной среды, самоочищение и самовосстановление почв, санитарное почвоведение.
- •5. Микроорганизмы почв и современные почвенные биотехнологии.
- •6. Микроорганизмы и охрана почв.
- •2. Современные методы, направленные на определение видового и функционального разнообразия почвенного микробного сообщества.
- •3. Методы для определения биомассы почвенных микроорганизмов.
5. Конъюгация у бактерий.
Конъюгация — перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при их непосредственном контакте. Процесс конъюгации у бактерий обнаружили Дж. Ледерберг и Э. Татум в 1946 г. Они провели следующий эксперимент. Были отобраны два ауксотрофных мутантных штамма Е. coli К-12: не способный синтезировать метионин и биотин штамм Met" Bio~ и не способный синтезировать треонин и лейцин штамм Thr~ Leu~. Оба штамма в течение ночи выращивали вместе на полноценной среде. Затем смешанную культуру центрифугировали, отмывали от полноценной среды и высевали на минимальную питательную среду. На минимальной питательной среде без метионина, биотина, треонина и лейцина появились прототрофные колонии Met+ Bio+ Thr+ Leu+ с частотой около 1 на каждые 107 клеток. Дополнительные опыты показали, что ни трансформации, ни трансдукции в данном случае не происходило. Из этого следовало, что образование рекомбинантных геномов происходило в результате контакта родительских клеток. Вскоре были получены микрофотографии конъюгирующих бактерий кишечной палочки, которые свидетельствовали о том, что между бактериями при конъюгации образуется "цитоплазматический мостик.
В 1952 г. Хейс установил неравноценную роль родительских штаммов при конъюгации. Выяснилось, что один штамм является донором (мужским), другой — реципиентом (женским). Клетки-доноры обладают половым фактором F. Он является конъюгативной плазмидой и представляет собой циркулярно замкнутую молекулу ДНК. Половой фактор F автономно существует в цитоплазме. В составе генома конъюгативной плазмиды имеется tra-оперон, гены которого контролируют образование половых ворсинок (пилей) донорской клетки, необходимых для осуществления контакта с реципиентной клеткой, конъюгативный перенос собственной плазмиды или хромосомной ДНК, а также репликацию автономной плазмиды. Механизм переноса генетического материала при конъюгации из бактерии донора в бактерию реципиента показали В. Вольман и Ф. Жакоб. Половой фактор F обладает способностью включаться в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. Клетки, в которых возникает этот процесс, образуют Hfr-штамм.
Бактериальные клетки с фактором F обозначают F4", а не имеющие его — F~. При конъюгации фактор F может перейти из мужской в женскую клетку и превратить ее в F4". Доноры F4" переносят довольно эффективно F-плазмиду во все клетки F~, a гены хромосомы — с низкой частотой (10~5). При конъюгации клетки-доноры F4" или Hfr соединяются с клетками-реципиентами F~ при помощи конъюгационного мостика — особой протоплазматической трубки, образуемой клеткой F"1". В клетке донора Hfr под влиянием фермента эндонуклеазы в точке внедрения фактора F происходит разрыв цепи ДНК. Свободный конец одной из цепей ДНК постепенно начинает передвигаться через конъюгационный мостик в клетку реципиента (F~) и сразу же достраиваться до двух-цепочной структуры. На оставшейся в клетке-доноре цепи ДНК синтезируется вторая цепь.
Так как фактор F у разных штаммов Hfr включается в хромосому и разрывает ее в разных местах, переход хромосом в реципиентную клетку начинается с разных участков. Для переноса всей цепи ДНК в клетку реципиента требуется при 37 °С 100 мин, но конъюгационный мостик очень хрупкий, легко разрывается, и, как правило, вся цепь не успевает перейти. Поэтому с более высокой частотой передаются гены, расположенные около начальной 0-й точки хромосомы донора. Затем ДНК донора в гомологичных участках вступает в контакт с ДНК реципиента, и в результате кроссинговера некоторые участки одной цепи ДНК реципиента заменяются фрагментами ДНК донора.
Искусственное прерывание конъюгации через определенное время после начала скрещивания и выявление рекомбинантов дали возможность определить последовательность перехода разных генов донора в клетку F~. На основании определения времени передвижения фрагментов разной длины из клеток Hfr в клетки F~ было установлено расстояние между генами в минутах, что позволило построить карты хромосом.
При картировании генов у бактерий с помощью конъюгации получается кольцевая генетическая карта хромосомы. Значение генетических карт позволяет планировать работу по получению организмов с определенными сочетаниями признаков, что используется в генетических экспериментах селекционной практике. Сравнение генетических карт хромосом разных видов способствует эволюционному процессу. На основе же генетических карт проводят генетический анализ. Методы картирования хромосомы при конъюгации: по градиенту передачи маркеров, по времени их вхождения в мерозиготу, по частоте кроссинговера.