- •Альбумины, их характеристики и функции. Основные фракции глобулинов, их функции.
- •4. Гормональный контроль концентрации белков в плазме крови.
- •6. Ферменты плазмы крови, энзимодиагностика. Группы фосфатаз, биологическое значение.
- •8. Холинэстеразы. Диагностическая ценность анализа.
- •9. Изоферменты, их происхождение, биологическое значение. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
- •11. Физиологические значения общей активности креатининкиназы (кк) и ее изоферментов в плазме крови. Диагностическая значимость определения активности кк и ее изоферментов.
- •13. Общие закономерности действия каскадных протеолитических систем крови; их взаимосвязи в осуществлении защитных функций.
- •17. Сосудистые, плазменные и тромбоцитарные факторы свёртывания крови.
- •23. Регуляция системы гемостаза.
- •26. Скрининговые методы исследования коагуляционного гемостаза.
- •29.Ангиотензин II (Анг II): структура, пути образования, функции.
- •30. Состав калликреин-кининовой системы (ккс), ее биологическая роль.
- •31. Кининогены (вмк и нмк). Кинины, их структура и функции. Рецепторы кининов.
- •35. Биологическая роль цикла мочевинообразования. Врожденные дефекты фер-ментов орнитинового цикла. Локализация ферментов и основные клинические про-явления.
- •39. Основные классы липидов. Функции триглицеридов, фосфолипидов и холестерола.
- •Физико-химические механизмы регуляции кос
- •62. Органы, участвующие в регуляции кос. Роль легких. Суть первичной функции дыхательной системы в регуляции кос? Процессы, протекающие в легких, для обеспечения этой функции.
- •63. Роль почек в регуляции кос. Превращение двузамещённых фосфатов в однозамещённые; преобразование бикарбонатов в угольную кислоту; синтез аммиака в почках и выведение солей аммония.
- •67. Изменение параметров водно-солевого обмена при его нарушениях.
- •69. Синтез гемоглобина. Регуляция биосинтеза гемоглобина.
8. Холинэстеразы. Диагностическая ценность анализа.
Холинэстеразы — ферменты класса гидролаз, расщепляющие различные эфиры холина с образованием холина и соответствующих кислот. В крови человека различают два типа фермента: "истинную" или ацетилхолинэстеразу и "ложную" холинэстеразу. Ферменты различаются по свойствам, локализации, субстратной специфичности.
Ацетилхолинэстераза содержится преимущественно в эритроцитах, также ее активность достаточно высока в нервной и мышечной ткани. Для сыворотки, печени, поджелудочной железы характерен второй тип холинэстеразы. Ацетилхолинэстераза обладает абсолютной субстратной специфичностью — ее субстратом является только ацетилхолин, в то же время холинэстеразе свойственна абсолютная групповая субстратная специфичность — она расщепляет, кроме ацетилхолина, такие субстраты как бензоилхолин, сукцинилхолин, бутирилхолин и другие эфиры холина.
Холинэстераза синтезируется в печени, представляет собой высокомолекулярный белок (ММ около 300 тыс Д), связанный с альбуминовой фракцией, ее уровень в сыворотке коррелирует с содержанием альбуминов.
Увеличение активности холинэстеразы в крови выявляется при гипертонической болезни, гиперлипопротеинемии IV типа, миоме матки, нефрозе, экссудативной энтеропатии, алкоголизме, сахарном диабете II типа.
Гипоферментемия характерна для тяжелых заболеваний печени, отражает вовлечение в процесс паренхимы и снижение синтетической способности гепатоцитов, является прогностическим признаком, так как коррелирует с тяжестью и распространенностью поражения: наблюдается при злокачественных новообразованиях, острых и хронических гепатитах, циррозе, застойной печени при сердечной недостаточности. Кроме заболеваний печени, уменьшение активности холинэстеразы выявляется при острых инфекциях, недостаточности питания, анемиях, мышечной дистрофии, хронических заболеваниях почек, у больных с инфарктом миокарда. Отравление фосфоорганическими соединениями, миорелаксантами, инсектицидами также снижает активность фермента в крови.
9. Изоферменты, их происхождение, биологическое значение. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изофермен-тами, или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента. Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов.
По своей структуре изоферменты в основном являются олигомерными белками. Причём та или иная ткань преимущественно синтезирует определённые виды протомеров. В результате определённой комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определённых изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.
Фермент лактатдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты). Повышение активности наблюдают при острых поражениях сердца, печени, почек, а также при мегалобластных и гемолитических анемиях. Однако это указывает на повреждение лишь одной из перечисленных тканей.
Креатинкиназа (КК) катализирует реакцию образования креатинфосфата. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.
10. Органная специфичность изоферментов ЛДГ. Физиологические значения общей активности лактатдегидрогеназы и ее изоферментов в плазме крови. Диагностическая значимость определения активности ЛДГ и ее изоферментов.
Лактатдегидрогеназа является гликолитическим ферментом и катализирует следующую реакцию: Лактат + НАД Лактатдегидрогеназа Пируват + НАДН
Молекула ЛДГ представляет собой тетрамер, состоящий из одного или двух типов субъединиц, обозначаемых как M (мышцы) и H (сердце). В сыворотке крови фермент существует в пяти молекулярных формах, различающихся по первичной структуре, кинетическим свойствам, электрофоретической подвижности (ЛДГ‑1 быстрее движется к аноду по сравнению с ЛДГ‑5, то есть более электрофоретичеки подвижна). Каждая форма имеет характерный полипептидный состав: ЛДГ‑1 состоит из 4 H‑субъединиц, ЛДГ‑2 — из 3 H‑субъединиц и 1 M‑субъединицы, ЛДГ‑3 представляет собой тетрамер из 2 H‑субъединиц и 2 M‑субъединиц, ЛДГ‑4 содержит 1 H‑субъединицу и 3 M‑субъединицы, ЛДГ‑5 состоит только из M‑субъединиц. По степени убывания общей каталитической активности энзима все органы и ткани располагаются в следующем порядке: почки, сердце, скелетные мышцы, поджелудочная железа, селезенка, печень, легкие, сыворотка крови.
От того, какой изофермент наиболее представлен, зависит преимущественный способ окисления глюкозы в ткани: аэробный (до CO2 и H2O) или анаэробный (до молочной кислоты). Подобное различие обусловлено разной степенью сродства изоферментов к пировиноградной кислоте. Изоферменты, содержащие в основном H‑субъединицы (ЛДГ‑1 и ЛДГ‑2), обладают низким сродством к пирувату и поэтому неспособны эффективно конкурировать за субстрат с пируватдегидрогеназным комплексом. В результате пируват подвергается окислительному декарбоксилированию и в виде ацетил‑КоA вступает в цикл Кребса.
Напротив, изоферменты, обладающие главным образом M‑субъединицами (ЛДГ‑4 и ЛДГ‑5), имеют более высокое сродство к пирувату и, как следствие, превращают его в молочную кислоту. Для каждой ткани установлены наиболее типичные изоферменты. Для миокарда и мозговой ткани основным изоэнзимом является ЛДГ‑1, для эритроцитов, тромбоцитов, почечной ткани — ЛДГ‑1 и ЛДГ‑2. В легких, селезенке, щитовидной и поджелудочной железах, надпочечниках, лимфоцитах преобладает ЛДГ‑3. ЛДГ‑4 находится во всех тканях с ЛДГ‑3, а также в гранулоцитах и мужских половых клетках, в последних дополнительно обнаруживается ЛДГ‑5. В скелетных мышцах изоферментная активность располагается в порядке убывания в ряду: ЛДГ‑5, ЛДГ‑4, ЛДГ‑3. Для печени наиболее характерен изофермент ЛДГ‑5, выявляется также ЛДГ‑4.
В норме основным источником активности ЛДГ в плазме крови являются разрушающиеся клетки крови. В сыворотке активность изоферментов распределяется следующим образом: ЛДГ‑2 > ЛДГ‑1 > ЛДГ‑3 > ЛДГ‑4 > ЛДГ‑5. При электрофорезе между фракциями ЛДГ‑3 и ЛДГ‑4 иногда обнаруживается дополнительная полоса изофермента ЛДГ‑X, данный изофермент локализован в тех же органах, что и ЛДГ‑5.
Все заболевания, протекающие с разрушением клеток, сопровождаются резким повышением активности ЛДГ в сыворотке крови. Нарастание общей активности фермента обнаруживается при таких заболеваниях как инфаркт миокарда, некротическое поражение почек, гепатит, панкреатит, воспаление и инфаркт легкого, опухоли различной локализации, повреждения, дистрофия и атрофия мышц, гемолитические анемии и физиологическая желтуха новорожденных, лимфогранулематоз, лейкозы. При инфаркте миокарда начало роста активности фермента в сыворотке крови отмечается на 8‑10 час от момента приступа, максимальное увеличение наступает к 24‑48 часу, нередко в 15‑20 раз превышая норму. Повышенная активность ЛДГ сохраняется до 10‑12 суток от начала заболевания. Степень нарастания активности фермента не всегда коррелирует с размерами поражения сердечной мышцы и для прогноза исхода заболевания может являться лишь ориентировочным фактором. У больных стенокардией активность фермента не изменяется, что позволяет применять тест для дифференциальной диагностики в пределах 2‑3 суток после сердечного приступа. Наличие органной специфичности ферментов позволяет применять исследование их активности с целью топической диагностики.
