Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АНТЕННЫ И УСТРОЙСТВА СВЧ.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
64.34 Mб
Скачать

3.2. Основные схемы распределения мощности и включения фазовращателей

Распределение высокочастотной мощности между из­лучателями, а также включение коммутационных фазо­вращателей может осуществляться по последовательной и параллельной схемам (рис. 3.2).

При последовательной схеме распределения мощ­ности в питающей линии поддерживается режим

бегущей волны и излучатели слабо связаны с линией. Фазовращатели в данном случае могут быть в свою очередь включены по параллельной или последователь­ной схеме (рис 3.3,а, б). Последовательное включение обычно не используется из-за высоких потерь, вносимых

фазовращателями, ограничения уровня подводимой мощности и жестких требований к точности установки фазы каждым фазовращателем. Кроме того, последова­тельное включение фазовращателей при коммутацион­ном методе управления лучом не обладает основным преимуществом последовательного включения, имею­щим место в антеннах с фазовращателями непрерывно­го действия и заключающимся в том, что при отклоне­нии луча все фазовращатели изменяют свою электрическую длину на одну и ту же величину. В коммутационных антеннах в случае последовательного включения фазовращателей переключение фазы в каждом из них при движении луча происходит по разным законам.

При последовательном распределении мощности и параллельном включении фазовращателей потери в ан­тенне в основном складываются из потерь в одном фазо­вращателе и мощности, рассеиваемой в нагрузке питаю­щего фидера. Последняя величина обычно составляет 5—10%. Распределение мощности может производиться в зависимости от типа используемой фидерной линий с помощью направленных ответвителей, резонансных щелей (рис. 3.3), коаксиальных тройников, волноводно - вибраторных элементов и т. д.

К. п. д. антенны с последовательной схемой распре­деления мощнрсти и параллельным включением фазо­вращателей равен

где Ризл, Рн , Рф — соответственно мощность излучения, мощность, поглощаемая в нагрузке фидера, и мощность потерь фазовращателя.

При параллельной схеме распределения мощности через каждый фазовращатель проходит только лишь часть излучаемой мощности, потери в линиях передачи уменьшаются и к. п. д. антенны примерно равен к. п. д. одного фазовращателя.

Параллельное питание может быть осуществлено различными способами, из которых некоторые могут быть пояснены с помощью схем, изображенных на рис. 3.4. В первой схеме постоянное деление мощности осуществляется с помощью волноводных тройников или кольцевых мостов. Другой разновидностью параллель­ной схемы распределения мощности является так называемая схема "эфирного" питания или схема квазиопти­ческого типа, когда система фазовращателей устанав­ливается в раскрыве антенны оптического типа (рупорно-параболической, зеркальной и т. д.) . При этом каждый фазовращатель с обеих сторон соединен из­лучателями, которые, с одной стороны, служат для приема, а с другой — для передачи электромагнитной энергии. Такие схемы намного упрощают распределение мощности, особенно при большом числе излучающих

элементов, из которых составлена антенна. В данном случае система фазовращателей с соответствующими излучателями представляет собой управляемую линзу.

В последовательной схеме распределения мощности величина связи излучателей с питающим фидером ха­рактеризуется коэффициентом связи [ЛО 9]:

где Рп —мощность, излучаемая п-м излучателем; РПр — мощность, проходящая дальше по линии.

Характер изменения величины аn в решетке зависит от требуемого амплитудного распределения f(x). Методы расчета величины коэффициента связи даны в гл. 5.

Зная коэффициент связи an, можно рассчитать эле­менты связи. Необходимые соотношения для элементов связи различных типов приводятся в справочной литературе.[ЛО 17]