
КСЕ 1 курс (Тулинов-старший)
.doc
Билет №33(продолжение1)
В частности, ультрафиолетовое и рентгеновское излучение вызывает дополнительную ионизацию верхней атмосферы, что приводит к ухудшению или даже полному прекращению радиосвязи (эффект Деллинджера) на освещённой стороне Земли. Обычно мощная вспышка сопровождается испусканием большого количества ускоренных частиц – солнечных космических лучей (СКЛ). Самые энергичные из них начинают приходить к Земле спустя чуть более 10 мин после максимума вспышки. Повышенный поток СКЛ у Земли может наблюдаться несколько десятков часов. Вторжение СКЛ в ионосферу полярных широт вызывает дополнительную ионизацию и, соответственно, ухудшение радиосвязи на коротких волнах. Вспышка генерирует мощную ударную волну и выбрасывает в межпланетное пространство облако плазмы. Ударная волна и облако плазмы за 1.5-2 суток достигают Земли и вызывают магнитную бурю, понижение интенсивности галактических космических лучей, усиление полярных сияний, возмущения ионосферы и так далее. Имеются статистические данные о том, что через 2-4 суток после магнитной бури происходит заметная перестройка барического поля тропосферы. Это приводит к увеличению нестабильности атмосферы, нарушению характера циркуляции воздуха (развитию циклонов и др. метеоявлений). Мировые магнитные бури представляют собой крайнюю степень возмущённости магнитосферы в целом. Более слабые (но более частые) возмущения, называемые суббурями, развиваются в магнитосфере полярных областей. Ещё более слабые возмущения возникают вблизи границы магнитосферы с солнечным ветром. Причиной возмущений последних двух типов являются флуктуации мощности солнечного ветра. При этом в магнитосфере генерируется широкий спектр электромагнитных волн с частотами 0,001 – 10,0 Гц, которые свободно доходят до поверхности Земли. Статистически установлена связь между уровнями солнечной и геомагнитной возмущённости и ходом ряда процессов в биосфере Земли (динамикой популяции животных, эпидемий, эпизоотий, количеством сердечно-сосудистых кризов и др.). Наиболее вероятной причиной такой связи являются низкочастотные колебания электромагнитного поля Земли. Это подтверждается лабораторными экспериментами по изучению действия электромагнитных полей естественной напряжённости и частоты на млекопитающих. Наряду с поисками физических механизмов ведутся исследования информационного аспекта Солнечно-Земных связей.
|
Билет №33(продолжение2)
Связи проявляются двояко, в зависимости от того, плавно или скачкообразно происходит перераспределение энергии солнечных возмущений внутри магнитосферы. В первом случае Солнечно-Земные связи проявляются в форме ритмических колебаний геофизических параметром (11-летних, 27-дневных и др.). Скачкообразные изменения связывают с так называемым триггерным механизмом, который применим к процессам или системам, находящимся в неустойчивом состоянии, близком к критическому. В этом случае небольшое изменение критического параметра (давления, силы тока, концентрации частиц и т.п.) приводит к качественному изменению хода данного явления или вызывает новое явление. Энергия геомагнитного возмущения преобразуется в энергию инфракрасного излучения. Последнее создаёт небольшой дополнительный разогрев тропосферы, в результате которого и развивается её вертикальная неустойчивость. При этом энергия развитой неустойчивости может на два порядка превышать энергию первоначального возмущения.
|
Билет 34
Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах. Однако самыми большими резервуарами накопленной энергии являются океаны огромные пространства беспрерывно перемещающихся водных потоков, покрывающих около 71 % всей земной поверхности. В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Ветровая энергия. Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры-от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории-от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Энергия рек. Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода-ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца.
|
Билет №34(продолжение)
Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек. Преимущества гидроэлектростанций очевидны: постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам ЭНЕРГИЯ ЗЕМЛИ. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится: нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. ЭНЕРГИЯ МИРОВОГО ОКЕАНА. Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10^26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10^18 Дж. Однако пока что люди умеют утилизовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Атомная Энергия. Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы. Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный веками принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений
|
Билет 35
Сложные органические соединения играют большую роль в природе, широко используются в самых различных технологиях. Поэтому разработка методов и средств их обнаружения, измерения концентрации и определения состояния (то есть методов диагностики) была и остается актуальной научной и технической проблемой. Особый интерес представляют сложные органические соединения, которые входят в состав природных сред и живых организмов или которые попадают в эти объекты, а иногда специально вводятся в них с теми или иными целями. Понятие о биополимерах. Полимер - многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество - мономер. Биологические полимеры - это полимеры, входящие в состав клеток живых организмов и продуктов их жизнедеятельности. Биополимерами являются белки, нуклеиновые кислоты, полисахариды. Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1-5%, а в некоторых клетках растений достигает 70%. Выделяют три группы углеводов: моносахариды (или простые сахара), олигосахариды (состоят из 2-10 молекул простых сахаров), полисахариды (состоят более чем из 10 молекул сахаров). Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. В зависимости от числа атомов углерода различают триозы, тетрозы, пентозы (рибоза, дезоксирибоза), гексозы (глюкоза, фруктоза) и гептозы. В зависимости от функциональной группы сахара разделяют на: альдозы, имеющие в составе альдегидную группу (глюкоза, рибоза, дезоксирибоза), и кетозы, имеющие в составе кетонную группу (фруктоза). Олигосахариды в природе в большей степени представлены дисахаридами, состоящими из двух моносахаридов, связанных друг с другом с помощью гликозидной связи. Наиболее часто встречаются мальтоза, или солодовый сахар, состоящий из двух молекул глюкозы; лактоза, входящая в состав молока и состоящая из галактозы и глюкозы; сахароза, или свекловичный сахар, включающий глюкозу и фруктозу. Полисахариды. В полисахаридах простые сахара (глюкоза, манноза, галактоза и др.) соединены между собой гликозидными связями. Если присутствуют только 1-4 гликозидные связи, то образуется линейный, неразветвленный полимер (целлюлоза), если присутствуют и 1-4, и 1-6 связи, полимер будет разветвленным (гликоген). Целлюлоза - линейный полисахарид, состоящий из молекул -глюкозы. Целлюлоза является главным компонентом клеточной стенки растений.
|
Билет №35(продолжением)
Липиды - жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2-3 до 50-90% в клетках семян растений и жировой ткани животных. В химическом отношении липиды, как правило, сложные эфиры жирных кислот и ряда спиртов. Они делятся на несколько классов: нейтральные жиры, воска, фосфолипиды, стероиды и др. Белки - это биологические гетерополимеры, мономерами которых являются аминокислоты. По химическому составу аминокислоты - это соединения, содержащие одну карбоксильную группу (-СООН) и одну аминную (-NH2), связанные с одним атомом углерода, к которому присоединена боковая цепь - какой-нибудь радикал R (именно он придает аминокислоте ее неповторимые свойства). В образовании белков участвуют только 20 аминокислот. Они называются фундаментальными или основными: аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин, аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин, аргинин, гистидин, лизин, аспарагиновая и глутаминовая кислоты. Некоторые из аминокислот не синтезируются в организмах животных и человека и должны поступать с растительной пищей (они называются незаменимыми). Аминокислоты, соединяясь друг с другом ковалентными пептидными связями, образуют различной длины пептиды. Пептидной (амидной) называется ковалентная связь, образованная карбоксильной группой одной аминокислоты и аминной группой другой. Белки представляют собой высокомолекулярные полипептиды, в состав которых входят от ста до нескольких тысяч аминокислот. Мононуклеотиды. Мононуклеотид состоит из одного пуринового (аденин - А, гуанин - Г) или пиримидинового (цитозин - Ц, тимин - Т, урацил - У) азотистого основания, сахара-пентозы (рибоза или дезоксирибоза) и 1-3 остатков фосфорной кислоты. Полинуклеотиды. Существуют два типа нуклеиновых кислот: ДНК и РНК. Нуклеиновые кислоты - полимеры, мономерами которых служат нуклеотиды. Нуклеотиды ДНК и РНК состоят из следующих компонентов: 1.Азотистое основание (в ДНК: аденин, гуанин, цитозин и тимин; в РНК: аденин, гуанин, цитозин и урацил). 2.Сахар-пентоза (в ДНК - дезоксирибоза, в РНК - рибоза). 3.Остаток фосфорной кислоты. ДНК (дезоксирибонуклеиновые кислоты) - длинноцепочечный неразветвленный полимер, состоящий из четырех типов мономеров - нуклеотидов А, Т, Г и Ц - связанных друг с другом ковалентной связью через остатки фосфорной кислоты.
|
Билет 36 Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней. Уровень организации живой материи - это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни: 1.Молекулярный (молекулярно-генетический). На этом уровне проявляются такие процессы жизнедеятельности, как обмен веществ и превращение энергии, передача наследственной информации. 2.Клеточный. Клетка является элементарной структурной и функциональной единицей живого. 3.Тканевой. Ткань - совокупность структурно сходных клеток, а также связанных с ними межклеточных веществ, объединенных выполнением определенных функций. 4.Органный. Орган - часть многоклеточного организма, выполняющая определенную функцию или функции. 5.Организменный. Организм - реальный носитель жизни, характеризующийся всеми ее признаками. В настоящее время часто выделяют единый "онтогенетический" уровень, включающий клеточный, тканевой, органный и организменный уровни организации. 6.Популяционно-видовой. Популяция - совокупность особей одного вида, образующих обособленную генетическую систему и населяющих пространство с относительно однородными условиями обитания. Вид - совокупность популяций, особи которых способны к скрещиванию с образованием плодовитого потомства и занимают определенную область географического пространства (ареал). 7.Биоценотический. Биоценоз - совокупность организмов разных видов различной сложности организации, обитающих на определенной территории. Если при этом учитываются и абиотические факторы среды обитания, то говорят о биогеоценозе. 8.Биосферный. Биосфера - оболочка Земли, структура и свойства которой в той или иной степени определяются настоящей или прошлой деятельностью живых организмов. Необходимо отметить, что биосферный уровень организации живой материи часто не выделяют, поскольку биосфера представляет собой биокосную систему, включающую не только живое вещество, но и неживое.
|
Билет 37 Рационал.познание системно. Оно сост.из последовател.мыслительных операций и формирует мыслител.сист. более или менее адекватную сист.бъективн. ральности. Системна и практическая деят-ть чел-а, причем уровень сист-ти практики повышается с ростом знания и накопления опыта. Системность различных видов отражения и преобразования действительности человеком есть в конечном счете проявление всеобщей системности материи и ее свойств Системное познание и преобразование мира предполагает: 1. Рассмотрение объекта деятельности (теоретической и практической) как системы, т.е. как ограниченного множества взаимодействующих элементов. 2. Опред.состава, структуры и орган-и элементов и частей сист. обнаружения главных связей между ними. 3. Выявление внешних связей системы, выделения из них главных . 4. Определение функции системы и ее роли среди других систем. 5. Анализ диалектики структуры и функции системы. 6. Обнаружение на этой основе закономерностей и тенденций развития системы. Познание мира, а “научное познание” в частности, не может осуществляться хаотически, беспорядочно; оно имеет определенную систему и подчиняется определенным закономерностям. Эти закономерности познания определяются закономерностями развития и функционирования объективного мира. С современной точки зрения системы классифицируются на целостные, в которых связи между составляющими элементами прочнее , чем связи элементов со средой, и суммативные, у которых связи между элементами одного и того же порядка, что и связи элементов со средой; органические и механические ; динамические и статические; “открытые” и “закрытые”; “самоорганизующиеся” и “неорганизованные” и т.д. Все совокупности являются системами, более того материя вообще проявляется в форме “систем”. Т.е. система есть форма существования материи. Система, являясь объектом, вещью и знанием, в тоже время выступает как нечто сложное ,взаимосвязанное, находящееся в самодвижении. Поэтому и категория “система”, будучи философской категорией, в отличие от понятий “объект”и “вещь”, отражает не что-то отдельное и неделимое, а противоречивое единство многого и единого
|
Билет №37(продолжение)
Система, являясь конкретным видом реальности, находится в постоянном движении, в ней происходят многообразные изменения. Однако всегда имеется такое изменение, которое характеризует систему как ограниченное материальное единство, и выражается в определенной форме движения. По формам движения системы подразделяются на механические, физические, химические, биологические и социальные. Так как высшая форма движения включает в себя низшие, то системы помимо их специфических свойств имеют общие свойства, не зависящие от их природы. Эта общность свойств и позволяет определять понятием “система” самые разнородные совокупности Система ,как понятие, обладает двумя противоположными свойствами: отграниченностью и целостностью. “Отграниченность” - внешнее свойство системы, “целостность” - ее внутреннее свойство, приобретаемое в процессе развития. Система может быть отграниченной но не целостной, но чем более система выделена, отграничена от среды, тем более она внутренне целостна, индивидуальна, оригинальна. Можно дать определение “системы” как отграниченного, взаимно связанного множества, отражающ. объективное существование конкретных отдельных взаимосвязанных совокупностей тел , и не содержащего специфических ограничений присущих частным системам. Данное определение характеризует систему как самодвижущуюся совокупность, так и взаимосвязь, взаимодействие, а оно и есть - движение.
|
Билет 38 Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах. Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО2 и Н2О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы. Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО2 и Н2О. Единый процесс энергетического обмена можно условно разделить на три последовательных этапа: Первый этап: - расщепление органических вещ-в в пищеварительной системе до промежуточных продуктов распада.(гидролиз). Белки + Н2О=аминокислота + тепло(рассеивается ) Жиры + Н2О = глицерин + жирные кислоты + тепло Полисахариды + Н2О = глюкоза + тепло Второй этап: (в клетке, в цитоплазме) - гликолиз - без кислородное расщепление глюкозы.Глюкоза под воздействием ферментов расщипляется до двух молекул С3Н6О3 С свыделением энергии.60% этой энергии рассеивается в виде тепла, 40% в виде АТФ. Третий этап: (кислородное расщепление в митохондриях ). На кислородном этапе: с внутренней стороны мембраны крист находятся молекулы переносчики . Электрон подхватывается молекулами переносчиками и перетаскивается с одной молекулы на другую (окисление), при этом он теряет энергию. Эта энергия на восстановление АТФ из АДФ. Этот процесс называется окислительное фосфорилирование. В конце цепи переносчиков стоит кислород он является акцептором . Анионы накапливаются с внутренней стороны мембраны , ионы с наружной стороны . Когда разность потенциалов между ними достигнет критического уровня ион через ферментативный канал проходит на внутреннею сторону мембраны. При этом выделяется энергия, она идет на фосфолирирование (АДФ-АТФ). В итоге на кислородном этапе образуется 36 АТФ.
|
Билет 39 Среди всего многообразия ныне существующих на Земле организмов выделяют две группы: вирусы и фаги, не имеющие клеточного строения; все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. Клетки прокариотического типа устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме; мембранные органеллы отсутствуют (их функцию выполняют различные выпячивания плазматической мембраны); в цитоплазме имеются многочисленные мелкие рибосомы; микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру. К прокариотам относят бактерии. Большинство современных живых организмов относится к одному из трех царств–растений, грибов или животных, объединяемых в надцарство эукариот. Основу структурной организации клетки составляют биологические мембраны.Мембраны состоят из белков и липидов. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов, располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мембраны каждой клетки специфичен и определяет её «паспортные» данные. Мембраны обладают свойством избирательной проницаемости, также свойством самопроизвольного восстановления целостности структуры.
|
Билет 40 ОСНОВНЫЕ ПОЛОЖЕНИЯ СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ Первые сведения о клеточном строении живых организмов датируются 1665 г., когда Р. Гук впервые обнаружил клетки, рассматривая через увеличительное стекло тонкий срез пробки. Представление о клетке, как элементарной микроскопической структуре организма сформировались в науке много позже, к 30-м гг XIX века, когда Т. Шванн сформулировал клеточную теорию. Дальнейшее развитие клеточная теория нашла в трудах немецкого патолога Р. Вирхова. Основными положениями совр клеточной теории являются: Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого; Клетки всех одноклеточных и многоклеточных организмов гомологичны; Каждая новая клетка образуется в результате деления исходной клетки; В сложных многокл организмах клетки специализированы по выполняемой ими функции и образуют ткани.Современная клеточная теория является одним из важнейших достижений биологии, доказывая единство строения и общность происхождения всех живых организмов. Клеточная теория является фундаментальной основой многих областей биологии, в том числе биотехнологии и генной инженерии. Клетка представляет собой основную единицу строения всех живых организмов, что клетки растений и животных сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единства всего органического мира. Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро.Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции. Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах). Оболочка - таможня клетки. Она следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие. Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство.Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети. Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр.
|