
КСЕ 1 курс (Тулинов-старший)
.doc
Билет №25 Структурные уровни организации живых систем Жизни как природному явлению присуща своя иерархия уровней организации, определенная упорядоченность, соподчиненность этих уровней. Открытие клетки как элемента живых структур и представление о системности, цельности этих структур стали основой последующего построения иерархии живого. Концепция структурных уровней живого включает представление об иерархической соподчиненности структурных уровней, системности и органической целостности живых организмов. В соответствии с этой концепцией структурные уровни различаются не только сложностью, но и закономерностями функционирования. Вследствие иерархической соподчиненности каждый из уровней организации живой материи должен изучаться с учетом характера ниже и вышестоящего уровней в их функциональном взаимодействии.Рассмотрим отдельные уровни организации живой материи, начав с низшей ступени, на которой смыкаются биология и химия.Молекулярно-генетический уровень. Это тот уровень организации материи, на котором совершается скачок от атомно-молекулярного уровня неживой материи к макромолекулам живого. Белки — органические соединения, входящие в состав всех живых организмов. Белки являются биополимерными макромолекулами, так как состоят из большого числа повторяющихся и сходных по структуре низкомолекулярных соединений (мономеров). Перестановки и различные сочетания мономеров в длинных полимерных цепях обеспечивают построение множества вариантов молекул белка и придают ему разнообразные свойства. В состав белка входит 20 аминокислот-мономеров. Характерным физическим свойством аминокислот, содержащихся в живых системах, является то, что все они способны поворачивать влево плоскость поляризации светового луча. В свою очередь, это означает, что свойством живой материи является ее молекулярная асимметричность, подобная асимметричности левой и правой рук. Опираясь на такую аналогию, это свойство живого назвали молекулярной хиральностью (от греч. cher — рука).Первоначально казалось, что фундаментальную основу жизни составляют именно белковые молекулы. Но с химической точки зрения ни сам белок, ни его составные части не представляют ничего уникального. Дальнейшие исследования, направленные на изучение механизмов воспроизводства и наследственности, позволили выявить то специфическое, что отличает на молекулярном уровне живое от неживого. Наиболее важным было выделение веществ из ядра клетки, обладающих свойствами кислот и названных нуклеиновыми (то есть ядерными) кислотами.
|
Билет №25(продолжение 1) Один тип этих кислот получил широко используемое сокращенное название РНК (рибонуклеиновые кислоты), другой — ДНК (дезоксирибонуклеиновые кислоты). Удалось доказать, что ДНК обладает способностью сохранять и передавать наследственную информацию организмов. В 1953 г. была расшифрована структура ДНК. Оказалось, что молекула ДНК состоит из двух мономерных цепей, идущих в противоположных направлениях и закрученных одна вокруг другой наподобие пары электрических проводов. ДНК, находящиеся в клетке, разделены на участки — хромосомы. Мономеры нуклеиновых кислот несут информацию, по которой строятся аминокислоты и белковые молекулы организма. Участок молекулы ДНК, содержащий информацию об одном из набора белков организма, называют геном. Гены расположены в хромосомах. Изучение строения и функции молекул нуклеиновых кислот стало возможным лишь при использовании физических методов и представлений. Молекулярная биология, изучающая биологические объекты и процессы на молекулярном уровне, — один из наиболее ярких примеров современной тенденции к интеграции научного знания. Клеточный уровень. Любой живой организм состоит из клеток. В простейшем случае — из единственной клетки (бактерии, амебы). Клетка является мельчайшей элементарной живой системой и является первоосновой строения, жизнедеятельности и размножения всех организмов. Клетки всех организмов сходны по строению и составу веществ. Всеми сложными многоступенчатыми процессами в клетке управляет особая структура, как правило, находящаяся в ее ядре и состоящая из длинных цепей молекул нуклеиновых кислот.Клетки обладают разнообразием форм, размеров, функций. Существуют клетки, не содержащие ядра — прокариоты (безъядерные клетки). Исторически они являются предшественниками клеток с развитой структурой, то есть клеток, имеющих ядро — эукариотов.«На общедоступном языке мы можем назвать ядро администратором клетки. Две главные черты роднят его с администраторами: оно стремится плодить себе подобных и успешно отражает все наши попытки узнать, чем же именно ядро занимается. Только попытавшись обойтись без него, мы узнаем, что оно действительно работает». (Д. Мэйзи. Строение и функции биологических структур.)Следует отметить, что к миру живого относятся также и вирусы — мельчайшие бесклеточные организмы размером примерно в 50 раз меньше бактерий. Они находятся на границе между живой и неживой материей. Не имея клеточной структуры, они способны ее воспроизводить, внедряясь в среду чужих клеток.Тканевый уровень. Совокупность клеток с одинаковым уровнем организации образует живую ткань. |
Билет №25(продолжение 2)
Из тканей состоят различные органы живых организмов.Организменный уровень. Система совместно функционирующих органов образует организм. В отличие от предыдущих уровней на организменном уровне проявляется большое разнообразие живых систем. Организменный уровень именуют также онтогенетическим.Популяционно-видовой уровень образован совокупностью видов и популяций живых систем. Популяция — это совокупность организмов одного вида, обладающих единым генофондом (совокупностью генов). Она является надорганизменной живой системой, так же, как и вид, состоящий обычно из нескольких популяций. На этом уровне реализуется биологический эволюционный процесс. Биоценотический уровень образован биоценозами — исторически сложившимися устойчивыми сообществами популяций, связанных друг с другом и окружающей средой обменом веществ.Биосферный уровень организации живого: совокупность биоценозов образует биосферу Земли.Отдельные структурные уровни живого являются объектами изучения для отдельных биологических наук, то есть условными разграничителями биологического знания. Так, молекулярный уровень изучается молекулярной биологией, генетикой; клеточный уровень служит объектом для цитологии, микробиологии; анатомия и физиология изучают жизнь на тканевом и организменном уровнях; зоология и ботаника имеют дело с организменным и популяционно-видовым уровнями; экология охватывает биоценотический и биосферный уровни
|
Билет 26 Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии. Это пространство может быть наполнено любым родом материи, или мы можем попытаться удалить из нее всю плотную материю, однако всегда имеется достаточное количество материи для того, чтобы воспринимать и передавать волновые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заменить прозрачными телами с заметной плотностью, то допускается, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира. Поэтому имеется некоторое основание предполагать, исходя из явлений света и тепла, что имеется какая-то эфирная среда, заполняющая пространство и пронизывающая все тела, которая обладает способностью приводиться в движение, передавать это движение от одной своей части к другой и сообщать это движение плотной материи, нагревая ее и воздействуя на нее разнообразными способами. Энергия, сообщенная телу нагреванием, должна была ранее существовать в движущейся среде, ибо волновые движения оставили источник тепла за некоторое время до того, как они достигли самого нагреваемого тела, и в течение этого времени энергия должна была существовать наполовину в форме движения среды и наполовину в форме упругого напряжения. Исходя из этих соображений, профессор В. Томсон доказал, что эта среда должна обладать плотностью, сравнимой с плотностью обычной материи, и даже определил нижнюю границу этой плотности. Поэтому эта среда обладает способностью получать и сохранять два вида энергии, а именно: «актуальную» энергию, зависящую от движения ее частей, и «потенциальную» энергию, представляющую собой работу, которую среда выполнит вследствие своей упругости, возвращаясь к первоначальному состоянию, после того смещения, которое она испытала. Сейчас мы знаем, что светоносная среда в отдельных случаях испытывает действие магнетизма, так как Фарадей открыл, что когда плоскополяризованный луч проходит через прозрачную диамагнитную среду в направлении магнитных силовых линий, образуемых магнитами или токами, то плоскость поляризации начинает вращаться. Это вращение всегда происходит в том направлении, в котором положительное электричество должно проходить вокруг диамагнитного тела для того, чтобы образовать действующее магнитное поле.
|
Билет 27
|
Билет28 В механике Ньютона взаимодействие тел количественно характеризуется силой. Более общей характеристикой взаимодействия тел является потенциальная энергия. Но не для всех сил она может быть введена. Первоначально в классической механике утвердилась концепция, что взаимодействие между телами происходит через пустое пространство, которое не принимает участия во взаимодействии, передача взаимодействия происходит мгновенно. Так, например, считалось, что перемещение Земли мгновенно приводит к изменению силы тяготения, действующей на Луну. В этом и состояла так называемая концепция дальнодействия. По сути дела утверждалась возможность мгновенной передачи какого-либо воздействия от одного тела другому. При этом не оговаривался механизм этой передачи. Однако данные представления были откинуты, как не соответствующие реальным, после открытия и исследования электрических и магнитных полей. Понятие поля в применении к электрическому и магнитному полям было введено в 30-х годах 19-го века М. Фарадеем. Концепция поля была возрождением теории близкодействия, основоположником которой был Р.Декарт. Согласно его концепции близкодействия взаимодействующие тела создают в каждой точке окружающего их пространства особое состояние - поле, которое проявляется в силовом воздействии на другие тела, в эти поля помещенные. Экспериментально было показано, что взаимодействие электрически заряженных тел осуществляется не мгновенно. Перемещение одной заряженной частицы приводит к изменению сил, действующих на другую заряженную частицу не в тот же момент, а спустя некоторое время. В разделяющем частицы пространстве происходит некоторый процесс, который распространяется с конечной, хотя и очень большой скоростью. Был сделан вывод, что имеется посредник, осуществляющий взаимодействие между заряженными частицами. Этот посредник был назван электромагнитным полем. Каждая заряженная частица создает вокруг себя электромагнитное поле, действующее на другие заряженные частицы.
|
||||||||||||||||||||||||||||||||||||||||||||||||
Билет №28(продолжение) Скорость распространения электромагнитных волн не превышает скорости их распространения в вакууме, равной 3108 м/с. Таким образом, возникла новая концепция - концепция близкодействия. Согласно этой концепции, взаимодействие телами осуществляется посредством тех или иных полей, непрерывно распределенных в пространстве. Всемирное тяготение, например, осуществляется за счет гравитационных полей. Взаимодействие тел передается не мгновенно, а через некоторый промежуток времени. Скорость передачи взаимодействия ограничена скоростью света в вакууме. В современной физике существует квантовая теория поля. Согласно этой теории, любое поле не непрерывно, а дискретно. Дискретность означает наличие некоторых частиц поля - квантов. Каждому полю соответствуют свои частицы. Например, электромагнитному полю соответствуют кванты, называемые фотонами. Фотоны - это переносчики электромагнитного взаимодействия. Допустим, вы стоите в лодке, ваш приятель тоже стоит в другой лодке. Вам надо сдвинуться так, чтобы в лодке ничего не изменилось. Нельзя касаться другой лодки и своего приятеля, нельзя просто выкинуть что-либо из лодки. Проще всего прийти в движение, перекинувшись с приятелем какими-то одинаковыми вещами, например, веслами. Вы как бы оттолкнетесь друг от друга, не касаясь и ничего не выкидывая из лодок. Точно также и тела, обмениваются одинаковыми квантами, ничего не теряя, и таким образом взаимодействуют друг с другом. Несмотря на великое многообразие взаимодействий тел друг с другом, в природе существует четыре вида взаимодействий и, соответственно, четыре типа полей. Перечислим их все в порядке возрастания величины взаимодействия. Гравитационные взаимодействия обеспечивают тяготение тел друг к другу. Слабые взаимодействия ответственны за большинство распадов и превращений элементарных частиц. Электромагнитные взаимодействия - это взаимодействие заряженных тел. Сильные взаимодействия связываются протоны и нейтроны (нуклоны) в атомном ядре. |
Билет 29 Механика -наука о движении и равновесии тел. При построении теории физика заменяет реальные объекты их идеализированными моделями. Движение- это изменение относительного положения тела с течением времени. Впервые принципы механики сформулированы Ньютоном в «Математических началах натуральной философии». Тело или система тел, относительно которых определяется положение остальных тел называется пространственной системой отсчета (ПСО). В качестве ПСО можно взять произвольное твердое тело и связать с ним координатные оси, например, декартовой системы координат. Существует два вида координатных систем: 1) правая, 2) левая. Определяются они с помощью правила буравчика. Пространство (по Ньютону) - это совокупность физического тела и возможных его продолжений. Время - это показание каких-то часов (под часами понимается любое тело или система тел, в которых совершается периодический процесс,служащий для измерения времени). Материальная точка - это тело, размеры которого пренебрежимо малы, что в рассматриваемом движении их можно не принимать во внимание и считать, что все вещество тела как бы сосредоточено в одной точке. Материальная точка ? это абстракция, идеализированный образ реально существующих тел. Движение материальной точки будет описано полностью, если известно ее положение в любой момент времени относительно выбранной системы отсчета. Полное описание движения сводится к нахождению трех координат: x = x(t); y = y(t); z = z(t); или к нахождению векторной функции r = r(t). мгновенная скорость. Производная скорости по времени называется ускорением материальной точки: а.
|
Билет 30 1.Первичный состав. Как только Земля остыла, вокруг неё, из выделенных газов, сформировалась атмосфера. Точное процентное соотношение элементов химического состава первичной атмосферы, к сожалению, определить не представляется возможным, но можно с точностью предположить, что газы, входящие в её состав, были подобны тем, которые теперь выбрасываются вулканами – углекислый газ, водяной пар и азот. «Вулканические газы в виде перегретых паров воды, углекислого газа, азота, водорода, аммиака, кислых дымов, благородных газов и кислорода формировали праатмосферу. В это время накопление кислорода в атмосфере не происходило, поскольку он расходовался на окисление кислых дымов (HCl, SiO2, H2S)»(1). Существуют две теории происхождения самого важного для жизни химического элемента – кислорода. По мере охлаждения Земли температура упала примерно до 100°C, большая часть водяного пара сконденсировалась и выпала на земную поверхность первым дождем, вследствие, чего образовались реки, моря и океаны – гидросфера. «Водяная оболочка на Земле обеспечила возможность накопления эндогенного кислорода, став его аккумулятором и (при насыщении) поставщиком в атмосферу, к этому времени уже очищенную от воды, углекислоты, кислых дымов, и других газов в результате прошедших ливней»(1). Другая теория утверждает, что кислород образовался при фотосинтезе в результате жизнедеятельности примитивных клеточных организмов, когда растительные организмы расселились по всей Земле, количество кислорода в атмосфере стало быстро увеличиваться. Однако, многие учёные склонны рассматривать обе версии без взаимного исключения. 2.Нынешний состав. В сегодняшнем химическом составе атмосферы преобладает азот и кислород. Представительство таких элементов как углекислый газ, аргон и других инертных газов очень мало, в общей сложности около 1%, но минимальное изменение их содержания может оказать серьёзное влияние на жизнь нашей планеты. Азот, СО2,аргон,кислород
|
Билет 31 Образование ядер химических элементов от углерода до группы железа происходит в результате гелиевого, углеродного, кислородного, неонового и кремниевого горения в недрах звезд. Примечательно, что в лабораторных условиях энергии сталкивающихся частиц намного превышают аналогичные в недрах звезд, поэтому полученные эффективные сигма-сечения не могут быть приняты для астрофизических реакций. В результате горения гелиевого ядра звезды температура ее поверхности может даже снизиться, и после изменения физических свойств звезда превращается в красный гигант. В момент, когда температура в ядре звезды достигает 1.5 х 108К, а плотность – 5 х 104 г/см3, начинается так. наз. тройная реакция: из трех атомов гелия образуется атом углерода. Наряду с рассмотренной возможна реакция с образованием кислорода из углерода и гелия с выделением гамма-частиц. Образующиеся ядра кислорода реагируют с гелием, и в результате формируется неон. Из неона – марганец. Процесс горения гелия сопровождается другими реакциями с образованием различных нуклидов. Образование атомных ядер, расположенных в таблице за группой железа, обеспечивается другими механизмами. Такие нуклиды образовываются в результате s-, r- и p- процессов. s-процесс представляет собой медленный захват нейтронов, при котором образующиеся неустойчивые ядра распадаются прежде, чем успеют присоединить следующий нейтрон. s-процесс идет в недрах звезд при их нормальной стадии эволюции. Тяжелые и сверхтяжелые элементы таблицы Менделеева, стоящие за Bi, образуются вследствие r-процесса. В этом процессе ядро должно захватить много нейтронов, прежде чем произойдет его отрицательный бэта-распад. Возможными астрофизическими условиями протекания r-процесса считаются механизмы, являющиеся следствием взрывов сверхновых, так как реакции быстрого захвата нейтронов в стационарных звездах невозможны. Окончание r-процесса прерывается спонтанным делением сверхтяжелых ядер. Быстрый захват нейтронов был частично реализован в искусственных условиях при взрывах ядерных бомб, начиненных ураном-238. p-процесс представляет собой образование редких, богатых протонами ядер путем захвата протонов или позитронов, так как ни одним процессом нейтронного захвата эти ядра не могут быть созданы. Однако физические модели условий протекания p-процесса в звездах остаются пока в большей степени неоднозначными по сравнению с процессами захвата электронов.
|
Билет №31(продолжение)
На сегодняшний день ученые придерживаются гипотезы скалывания – образования ядер легких элементов путем реакции деления ядер углерода, азота и кислорода при столкновении с ядрами водорода и гелия либо в космических лучах, либо космических лучей с атомами межзвездных газовых облаков. Космические лучи – это поток заряженных частиц, включая ядра атомов, которые заполняют пространство Галактики. Их источником считаются взрывы сверхновых звезд. Содержание лития, берилла и бора в космических лучах на пять порядков больше, чем в звездах. Это указывает на то, что реакции скалывания имеют место в космических лучах. Образование химических элементов, за исключением водорода и гелия, из которых сформировалась Солнечная система, произошло в звездах предшествующего Солнцу поколения. Есть основания полагать, что Солнечная система образовалась из газопылевого облака – остатка сверхновых, которые прошли все этапы звездного нуклеосинтеза и взорвались.
|
Билет 33 Солнечно – Земные Связи Система прямых или опосредованных физических связей между гелио- и геофизическими процессами. Земля получает от Солнца не только свет и тепло, обеспечивающие необходимый уровень освещённости и среднюю температуру её поверхности, но и подвергается комбинированному воздействию ультрафиолетового и рентгеновского излучения, солнечного ветра, солнечных космических лучей. Вариации мощности этих факторов при изменении уровня солнечной активности вызывают цепочку взаимосвязанных явлений в межпланетном пространстве, в магнитосфере, ионосфере, нейтральной атмосфере, биосфере, гидросфере и, возможно, литосфере Земли. Изучение этих явлений и составляет суть проблемы Солнечно-Земных связей. Строго говоря, Земля оказывает некоторое обратное воздействие на Солнце, однако оно ничтожно мало обычно рассматривают только воздействие солнечной активности на Землю. Это воздействие сводится либо к переносу от Солнца к Земле энергии, выделяющейся в нестационарных процессах на Солнце (энергетический аспект Солнечно-Земные связи), либо к перераспределению уже накопленной энергии в магнитосфере, ионосфере и нейтральной атмосфере Земли (информационный аспект). Перераспределение энергии может происходить либо плавно (ритмические колебания геофизических параметров), либо скачкообразно (триггерный механизм). Представления о Солнечно-Земных связях складывались постепенно, на основе отдельных догадок и открытий. Так, в конце XIX в. К.О.Биркелан первые высказал предположение, что Солнце кроме волнового излучения испускает также и частицы. В 1915 г. А.Л.Чижевский обратил внимание на циклическую связь между развитием некоторых эпидемий и пятнообразовательной деятельностью Солнца. Синхронность многих гелио- и геофизических явлений (а также форма кометных хвостов) наводила на мысль, что в межпланетном пространстве имеется агент, передающий солнечные возмущения к Земле. Этим агентом оказался солнечный ветер, существование которого экспериментально было доказано в начале 1960-х гг. путём прямых измерений с помощью автоматических межпланетных станций. Открытие солнечного ветра вместе с накопленными данными о других проявлениях солнечной активности послужило основой для исследования физики Солнечно-Земных связей. Последовательность событий в системе Солнце-Земля можно проследить, наблюдая цепочку явлений, сопровождающих мощную вспышку на Солнце – высшее проявление солнечной активности. Последствия вспышки начинают сказываться в околоземном пространстве почти одновременно с событиями на Солнце (время распространения электромагнитных волн от Солнца до Земли – чуть больше 8 минут). |