- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
47 Деградация белков
В клетках постоянно происходит не только синтез белков, но и их распад.
а) Какой в этом смысл? Зачем разрушать столь важные макромолекулы, да еще созданные в результате таких сложных процес- сов, каковыми являются транскрипция ДНК, процессинг и трансляция РНК, а также фолдинг, модификация и сортировка белков?
Во-первых, белки, как и ДНК, подвергаются «старению» — так или иначе модифицируются под действием свободных радикалов, излучения, тепловых флуктуаций и т. д. И если в случае ДНК просто взять и разрушить всю молекулу нельзя, а приходится ее «ремонтировать», то в случае белков легче заменить «старую», поврежденную молекулу на новую.
Во вторых (и это не менее важный мотив!), содержание тех или иных белков в клетке или внеклеточной среде вовсе не всегда должно быть постоянным. В процессе адаптации к меняющимся условиям жизнедеятельности нередко возникает необходимость в изменении концентрации определенных белков — повышении или снижении. Это осуществляется, как правило, путем соответствующего изменения скорости их синтеза. Но, чтобы последнее эффективно сказывалось на концентрации, должен постоянно происходить распад белковых молекул.
б) В то же время белки значительно различаются по средней продолжительности жизни своих молекул. Наиболее короткоживущими являются регуляторные белки.
Структурные белки (например, мышечные) имеют гораздо большую продолжительность жизни. Но и они периодически обновляются, Причем при ряде состояний (недостаточной функции или голодании) распад начинает преобладать над синтезом и мышечная масса снижается.
в)Многие белки разрушаются в тех же клетках, где и синтезируются. Это большинство внутриклеточных белков.
Но есть и такие белки, которые образуются в одних, а разрушаются в других клетках. В основном, это внеклеточные белки (соединительной ткани, плазмы крови и т. д.). Однако сюда же относятся и некоторые внутриклеточные белки, например гемоглобин. Его синтез происходит в клетках эритроидного ряда (предшественниках эритроцитов), а распад в макрофагах селезенки, захватывающих «старые» эритроциты.
г)Как бы ни были пространственно разделены синтез и распад белка, содержание последнего является постоянным (стационарным), если скорости синтеза и распада совпадают.
Так, постоянство содержания гемоглобина в крови обеспечивается тем, что ежесуточно и образуется (в красном костном мозгу), и разрушается (в селезенке) примерно 6,25 г этого белка.
Чаще всего количество белка меняется в результате изменения скорости его образования в результате тех или иных регуляторных воздействий.
Но не надо думать, что при этом не меняется и скорость распада! Обычно последняя прямо пропорциональна текущей концентрации белка. Поэтому, например, при повышении скорости синтеза постепенное накопление белка ведет к «автоматическому» росту и скорости распада. Так что в итоге эти скорости вновь сравниваются и достигается новое стационарное состояние — но на более высоких уровнях концентрации белка и скоростей его обмена. Причем количество белка увеличится ровно во столько раз, во сколько возросла скорость синтеза (а затем и распада).
д)Как и в каких структурах разрушаются белки? В этом отношении еще много неясного.
Однако известно, что у эукариот распад короткоживущих белков (например, того же белка р53) является убиквитин-зависимым. Убиквитин (Убн) — небольшой белок (76 аминокислотных остатков), который связывается с данными белками и тем самым как бы «метит» их.
Для присоединения Убн к белку-мишени требуются три фермента:
—Убн активирующий фермент (Е1), формирующим по С-концу Убн тиоэфирную связь;
—Убн конъюгирующий фермент (Е2), принимающий Убн на себя; таких ферментов — целое семейство; из них каждый служит донором Убн для определенных белков;
—Убн лигаза (Е3), переносящая Убн с E2 на белок; она также представлена различными формами, специфичными в отношении тех или иных белков.
Связывание Убн осуществляется через остатки лизина белка причем с одной молекулой белка соединяется сразу много молекул Убн. Это происходит по следующим причинам: во-первых, в белке может быть несколько остатков лизина; во-вторых, последующие молекулы Убн, видимо, могут присоединяться к предыдущим, образуя цепочки.
Помеченные таким образом белки затем быстро разрушаются в специальных частицах — протеосомах. Это мультибелковые цилиндрические структуры, которые содержат многочисленные протеазы.
Другие белки — с большей продолжительностью жизни —разрушаются в лизосомах. Здесь уже может иметь значение функциональное состояние белка — точнее, состояние его структуры, «диагностируемое» шаперонами.
