- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
5.Вторичная структура днк, правило э.Чаргаффа
В 1953 г. американский генетик Д.Уотсон и английский физик Ф.Крик предложили модель вторичной структуры. Согласно этой модели ДНК по своей пространственной организации представляет собой двойную спираль. Свое открытие ученые сделали, основываясь на ранее полученных результатах других ученых. Так Э.Чаргафф и более поздние исследователи, изучая нуклеотидный состав ДНК различных видов
организмов, сделали следующие выводы:
a) нуклеотидный состав ДНК разных тканей одного и того же
вида одинаков;
b) нуклеотидный состав ДНК у разных видов различен;
c) нуклеотидный состав не зависит от возраста и питания;
d) в составе ДНК число остатков аденина всегда равно числу
остатков тимина, а число остатков гуанина равно числу остатков цитозина.
Другие ученые Р.Франклин и М.Уилкинс опубликовали рентгенограмму, полученную при рентгеноструктурном анализе ДНК. Метод рентгеноструктурного анализа широко используется при исследовании пространственной организации молекул. Предложенная
Уотсоном и Криком двойная спираль ДНК объяснила результаты исследований выше упомянутых ученых. Ниже представлены параметры двойной спирали ДНК, предложенной Уотсоном и Криком:
a) ДНК состоит из двух цепей, закрученных в правую двойную
спираль
b) цепи в молекуле ДНК расположены относительно друг друга антипараллельно;
c) молекулы азотистых оснований ориентированы перпендикулярно оси двойной спирали;
d) на внешней стороне двойной спирали находятся остатки
пентозы и фосфорной кислоты;
e) цепи ДНК при закручивании в двойную спираль образуют большую и малую борозды, ширина большой борозды – 2,2 нм, малой – 1,2 нм;
f) на один виток спирали приходится 10 нуклеотидных остатков;
g) полный виток спирали имеет длину 3,4 нм;
h) диаметр двойной спирали 1,8 нм;
i) цепи ДНК связаны друг с другом водородными связями, которые образуются между гуанином одной цепи и цитозином другой цепи, или между тимином и аденином, расположенными в разных цепях;
j) между тимином и аденином образуются две водородные связи, а между гуанином и цитозином – три водородные связи.
Параметры
ДНК
Способность гуанина взаимодействовать в молекуле ДНК только с цитозином, а аденина – только с тимином называют комплементарностью, а основания гуанин и цитозин, аденин и тимин – комплементарными. Согласно принципу комплементарности, последовательность одной цепи будет определять последовательность другой цепи.Всегда против аденина будет находится тимин, а против гуанина – цитозин. Таким образом, цепи ДНК в двойной спирали будут комплементарны друг другу. Двойная спираль стабилизируется также стэкинг – взаимодействиями между основаниями. Основания расположены друг над другом и сближены своими плоскостями. В результате между ними
возникают гидрофобные взаимодействия, а также дипольные взаимодействия П–связей.
Образование водородных связей между аденином и тимином,
гуанином и цитозином в молекуле ДНК
Параметры двойной спирали в зависимости от условий и состава ДНК могут несколько отличатся от той модели, которую предложили Уотсон и Крик. В настоящее время описаны и другие модели ДНК. Тем не менее, во всех предложенных моделях сохраняется принцип комплементарности, и цепи ДНК закручены в двойную спираль.
A-форма ДНК
A-форма ДНК образуется при относительно низкой влажности. Эта структура является правой спиралью. В этой форме ДНК на виток спирали приходится 11 пар оснований. Расстояние между нуклеотидами вдоль оси спирали составляет 2,56 А. Пары оснований наклонены на 20o
С- форма ДНК
С-ДНК образуется при высокой концентрации соли и значениях влажности, промежуточных между теми, при которых образуются
А- и В-ДНК. Шаг спирали С-ДНК равен 30,9 А. Число пар оснований
на виток составляет 9,33. Пары оснований наклонены на угол – 8о относительно оси.
Z-форма ДНК
Z-форма ДНК – левоспиральная .Она была открыта в 1979 г при исследовании структуры гексануклеотида d(CG)3. У этой спирали сохраняется уотсон-криковское спаривание оснований. На виток Z-спирали приходится 12 пар оснований. Кольцевые двухцепочечные молекулы ДНК могут находиться в состоянии суперспирализации. Суперспирализация может возникнуть при локальном расплетении двойной спирали. Возникшее в результате напряжение снимается суперспирализацией. Переход кольцевой молекулы ДНК в суперспирализованное состояние и обратно осуществляется при участии топоизомераз.В молекуле ДНК могут присутствовать обращенные повторы –палиндромы:
ATCGA:TCGAT
TAGCT:AGCTA
