- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
38. ТРнк: строение и свойства
тРНК Основными задачами тРНК является: а) трансформация генетической информации, закодированной в иРНК, в информацию о первичной структуре белка; б) перенос аминокислотных остатков к месту синтеза белка. тРНК – это небольшие молекулы, состоящие из 73 – 93 нук- леотидов, что соответствует относительной молекулярной массе 24000 – 31000. На долю тРНК приходится около 10 – 15 % общего количества клеточной РНК. В тРНК присутствуют модифицирован- ные (минорные) азотистые основания (псевдоуридин, дигидроуридин, тимидин, 7-метилгуанозин, инозин и др.). Их доля может достигать до 25 %. На 3’-конце всех тРНК находится тринуклеотидная после- довательность ЦЦА. Более половины оснований тРНК образуют внутрицепочечные пары по принципу комплементарности. Таким образом, формируется вторичная структура, получившая название клеверного листа. В ней выделяют (риса) дигидроуридиловую ветвь, содержащую до 3 остатков дигидро- уридина; б) псевдоуридиловую ветвь, содержащую минорные азотистые ос- нования псевдоуридина; в) антикодоновую ветвь, в центре которой находится антикодон, ко- торый комплементарен в антипаралельном направлении кодону иРНК; г) дополнительную ветвь. Число составляющих ее нуклеотидов варь- ирует от 3 до 20. В некоторых тРНК данная ветвь отсутствует; д) акцепторную ветвь с универсальной 3'-концевой последовательно- стью ЦЦА, служащей акцептором остатка аминокислоты. который присоединяется к 3’- или 2’-гироксильной группе остатка рибозы последнего нуклеотида (рис. 5.9).. 5.8):
На рис. 5.10 показана нуклеотидная последовательность и вто- ричная структура дрожжевой аланиновой тРНК.
Рис. 5.11. Трехмерная структура фенилаланиновой тРНК дрожжей
Каждая аминокислота, как правило, имеет несколько соответствующих ей тРНК, которые называются изоакцепторными. Изоакцепторные тРНК отличаются антикодонами и используются для счи- тывания разных кодонов иРНК, соответствующих одной и той же аминокислоте. Общее число генов тРНК в различных организмах сильно варь- ирует (у Escherichia coli их около 70, у шпорцевой лягушки Xenopus laevis около 7 000, у человека – 1300.). Каждый ген тРНК может быть представлен в геноме десятками копий.
Гетероядерные РНК (гяРНК) представляют собой смесь транскриптов и находится в ядре. Некоторые из них являются пер- вичными транскриптами, другие частично процессированными. Малые ядерные РНК (мяРНК) – короткие молекулы, прини- мающие участие в созревании РНК. Их размер составляет от 65 до 1000 и более нуклеотидов.
39. ТРнк-синтетазы их фунуции и образование тРнк
ПРОЦЕССИНГ тРНК Почти все тРНК синтезируются в виде предшественников – более длинных молекул (пре-тРНК). В результате процессинга проис- ходит удаление нуклеотидных последовательностей с флангов пре- тРНК. С 5’-конца фрагмент нуклеотидной цепи отщепляет фермент, называемой РНКазой Р. РНКазой P является рибонуклеопротеином, каталитическую функцию в котором осуществляет РНК-компонент, белок же выполняет структурную роль. В бактериальной РНКазе P есть участок, комплементарный ЦЦА участку тРНК. Эукариотическая РНКаза P узнает другие элементы предшественника тРНК. С 3’-конца пре-тРНК действует экзонуклеаза, укорачивающая РНК постепенно, удаляя по одному нуклеотиду. На заключительных ста- диях созревания тРНК к 3’-концу полинуклеотидилтрансфераза при- соединяет последовательность ЦЦА (рис. 5.20).
В процессе созревания тРНК также происходит модификация азотистых оснований – в результате которой образуются минорные основания: псевдоуридин, дигидроуридин, тимидин, 7-метил- гуанозин, инозин и др.
Сплайсинг пре-тРНК Некоторые пре-тРНК дрожжей содержат интрон, расположен- ный на расстоянии одного нуклеотида от 3’-конца антикодона. Раз- меры интрона у разных пре-тРНК колеблются от 14 до 64 нуклеоти- дов. Канонические последовательности на границе интрона и экзона, характерные для пре-иРНК, у пре-тРНК отсутствуют. В тоже время в составе интронов имеются последовательности комплементарные антикодону. Спаривание этих последовательностей с антикодоном, по-видимому, и обуславливает формирование структур, обеспечи- вающих протекания сплайсинга. В процессе сплайсинга нуклеаза вырезает интрон, а лигаза обеспечивает сшивание двух фрагментов тРНК за счет образования фосфодиэфирной связи, в результате образуется ковалентно замкнутая молекула тРНК (рис. 5.22).
Аминоацил-тРНК-синтетаза (АРСаза) — фермент синтетаза, катализирующий образование аминоацил-тРНК в реакции этерификации определенной аминокислоты с соответствующей ей молекулой тРНК. Для каждой аминокислоты существует своя аминоацил-тРНК-синтетаза.
АРСазы обеспечивают соответствие нуклеотидным триплетам генетического кода (антикодону тРНК) встраиваемых в белок аминокислот, и, таким образом, обеспечивают правильность происходящего в дальнейшем считывания генетической информации с мРНК при синтезе белков на рибосомах.
