- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
Различают три этапа транскрипции: инициацию, элонгацию и терминацию. Инициация. На стадии инициации РНК-полимераза, взаимодействуя с промотором, образует двойной закрытый комплекс, так он называется, потому что состоит из двух компонентов РНК-полимеразы и ДНК, цепи которой в пределах комплекса соединены водородными связями между комплементарными основаниями. Затем происходит плавление ДНК на небольшом участке, таким образом, формируется двойной открытый комплекс, и затем начинает синтез молекулы РНК. После образование первых фосфодиэфирных мостиков между рибонуклеотидами двойной
комплекс переходит в тройной комплекс. На этом заканчивается стадия инициации.
Элонгация. Стадия элонгации иРНК имеет ряд аналогий с элонгацией ДНК. В качестве предшественников для нее необходимы рибонуклеозидтрифосфаты. Этап элонгации транскрипции, т.е. рост цепи иРНК, происходит путем присоединения рибонуклеозидмонофосфатов к 3'-концу цепи с одновременным освобождением пирофосфата. Копирование у эукариот обычно осуществляется на ограниченном участке ДНК (т.е. в пределах гена), хотя у прокариот в ряде случаев транскрипция может проходить последовательно через несколько сцепленных генов (цистронов), формирующих единый оперон, и с одного общего промотора. В таком случае образуется полицистронная иРНК.
Терминация. Транскрипция завершается в специфическом участке ДНК, содержащем терминирующую последовательность. В клетках Е. сoli выявлен особый белок (ро-фактор), повышающий точность терминации. Белок присоединяется к 5'-концу растущей иРНК и продвигается по ней, постепенно приближаясь к ДНК и как бы преследуя РНК-полимеразу. В момент, когда РНК-полимераза останавливается в сайте-терминаторе, фермент захватывается ро-фактором и сбрасывается с ДНК. Терминатор содержит особую последовательность оснований, прочитывающуюся одинаково в обеих цепях ДНК, но в противоположных направлениях.
Промотор — участок связывания фермента, осуществляющего транскрипцию ДНК - РНК-полимеразы. Является местом начала транскрипции. Представляет собой короткую последовательность из нескольких десятков нуклеотидов ДНК, с которой специфически связывается РНК-полимераза. Кроме того, промотор определяет, какая из двух цепей ДНК будет служить матрицей для синтеза иРНК.
Терминатор - участок в конце оперона, сигнализирующий о прекращении транскрипции.
Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
ТРАНСКРИПЦИЯ ПРОКАРИОТ
Прокариоты содержат одну РНК-полимеразу, состоящую изнескольких субъединиц. Наиболее изучена РНК-полимераза E.coli. Этот фермент состоит из субъединиц, обозначаемых буквами греческого алфавита а, b, b' и сигма. РНК-полимераза может существовать вдвух формах - в форме холофермента, его субъединичный составвыражается формулой α2ββ'ϭ и кор-фермента - α2ββ'. Только холофермент может инициировать синтез РНК. После инициации транскрипции -ϭсубъединица отделяется и элонгацию осуществляет кор-фермент. Таким образом,ϭ-субъединица, или ее еще называют ϭ-фактор, необходима для узнавания промотора, β-субъединица участвует в связывании НТФ, β'-субъединица взаимодействует с ДНК,комплекс α2β'специфически связывается с промоторными нуклеотидными последовательностями. При взаимодействии с ДНК РНК-полимераза «закрывает» участок размером 60 п.н.
В клетке Е.соli присутствуют несколько ϭ-факторов, они ответственны за узнанание РНК-полимеразой различных промоторов. Какправило ϭ-факторы узнают блоки, отстоящие от точки начала транскрипции приблизительно на 10 и 35 нуклеотидов. Эти блоки имеют консервативные (общие для всех в пределах одной группыпромоторов) нуклеотидные последовательности.
Различные ϭ-факторы отвечают за узнавание различных групп промоторов и обеспечивают транскрипцию определенных генов .
Инициация транскрипции включает образование двойного закрытого комплекса, затем формируется двойной открытый комплекс ипосле этого происходит синтез коротких олигорибонуклеотидов. После того, как синтезируется фрагмент РНК более 9 нуклеотидов, ϭ-фактор необратимо диссоциирует и транскрипция вступает а стадиюэлонгации. Элонгацию осуществляет кор-фермент - α2ββ'.
В процессе элонгации транскрипции образуется дуплекс РНК-ДНК, размер которого составляет около 12 пар нуклеотидов.
Кор-фермент способен синтезировать РНК со скоростью около40 нуклеотидов в секунду.
При достижении терминатора кор-фермент завершает синтезРНК. У прокариот существует два типа терминаторов: р-зависимые ир-независимые. На р-зависимых терминаторах терминация осуществляется в присутствии белкового р-фактора. Такая терминация носитназвание р-зависимой терминации. Терминация транскрипции на независимых от р-фактора терминаторах называется р-независимойтерминацией.
р-Независимая терминация обеспечивается образованиемшпильки на PНК в процессе транскрипции и следующей за ней олигоуридиловой последовательностью. Шпилька приводит к паузе втранскрипции, а олигоуридил-олигоадениловый дуплекс, как наименее стабильный, диссоциирует во время паузы .
В случае р-зависимой терминации на синтезируемой РНК находится участок, с которым взаимодействует р-фактор. р-Фактор является НТФазой и способен испашзовать энергию гидролиза НТФ для движения но молекуле РНК от места посадки, расположенного в области 5'-конца РНК, в сторону ее З'-конца. Как только р-фактор «догонит» работающую РНК-полимеразу, происходиттерминация транскрипции .
Виды оперонов Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. К наиболее хорошо изученным оперонам бактерий относят:Лактозный (lac)-оперонГалактозный (gal)-оперонТриптофановый (trp)-оперонРассмотрим механизмы регуляции активности генов на примере лактозного оперона кишечной палочки.
Лактозный оперон Оперон – участок бактериальной хромосомы, включающий следующие участки ДНК: Р – промотор, О – оператор, Z, Y, А – структурные гены, Т –терминатор. (В состав других оперонов может входить до 10 структурных генов.)Промотор – место присоединения РНК- полимеразы.Оператор – участок оперона, к которому присоединяются белки-репрессоры или активаторы транскрипции.Структурные гены – гены кодирующие ферменты, участвующие в метаболизме лактозы. Терминатор служит для отсоединения РНК-полимеразы после окончания синтеза иРНК, соответствующей ферментам Z, Y, А, необходимым для усвоения лактозы.
Структурные гены лактозного оперона — lacZ, lacY и lacA:
lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетильную группу от ацетил-КoA на бета-галактозиды.
Для катаболизма лактозы необходимы только продукты генов lacZ и lacY, роль продукта гена lacA не ясна. Возможно, что реакция ацетилирования дает бактериям преимущество при росте в присутствии определенных неметаболизируемых аналогов бета-галактозидов, поскольку эта модификация ведет к их детоксикации и выведению из клетки.
