- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
21.Мини-транспозоны
Для переноса генов особенно удобны мини-Ми фаги (Resibois et al., 1981). Так называют фаги Ми, у которых после операций in vivo (или in vitro) утрачиваются литические функции, но сохраняются, по крайней мере, концы ДНК и ген А (например, Ми18Л). Без фага-помощника мини-Mu фаги могут интегрироваться в бактериальную хромосому, образовывать делеций и вызывать слияние репликонов. Если же у мини-Mu фага сохраняются и другие ранние функции, как, например, у МиА26, он, кроме того, способен осуществлять перенос бактериальных фрагментов. Мини-Mu фаг Ми40, утративший все существенные гены, переносит гены только в присутствии фага-помощника. Крут возможностей мини-Ми фагов существенно расширился после введения в них различных репликаторов, маркеров антибио-тикоустойчивости и генов-репортеров (Groisman, Casadaban, 1986). Это позволило не только извлекать гены из хромосомы и переносить их, но также проводить их анализ и мультипликацию (клонирование).
Мини-Mu фаги отличаются целым рядом преимуществ перед другими транспозонами в плане осуществления геномных перестроек и клонирования ДНК in vivo:
1) у них высока частота транспозиции;
2) нет специфичности к сайтам интеграции;
3) достаточно широк круг хозяев;
4) ими можно управлять с помощью термочувствительного репрессора (продукт гена с);
5) мини-Ми ДНК упаковывается in vivo в фаговые головки, поэтому ее можно переносить в другие клетки путем их инфекции.
Фаги Ми и мннн-Ми могут трансдуцировать бактериальные гены благодаря тому, что на концах их ДНК (в основном на правом конце, где локализуется ген S) имеются вариабельные по длине и нуклеотидным последовательностям участки бактериальной ДНК. На 5-концах эти участки достигают 1—2 т.п.н. Их размер определяется разностью между емкостью фаговой головки (38 т.п.н.) и длиной Ми ДНК (37 т.п.н.). Здесь может располагаться целый бактериальный ген, который фаг Ми способен переносить и который с частотой 10~9—10~7 может встроиться в бактериальную хромосому за счет RecA-зависимой рекомбинации. Фаг мини-Mu осуществляет ту же трансдукцню с частотой на два порядка выше, так как из-за небольшого размера его ДНК (несколько тысяч пар нуклеотидов) длина участка бактериальной ДНК на ^-концах может достигать 30 т.п.н.
При репликации ДНК мини-Ми фагов некоторые фрагменты бактериальной ДНК размером до 25—30 т.п.н. могут оказаться между двумя мини-Mu ДНК, находящимися в одной ориентации. Такие структуры ведут себя как транспозоны. После упаковки в фаговые головки и последующей инъекции в клетки они способны интегрироваться в случайные места клеточной хромосомы. Этот способ RecA-независимой трансдукции получил название мини-мюдукции. Мини-мюдукцию используют, например, для переноса и интеграции методами in vivo чужеродных генов, когда RecA-зави-симая рекомбинация неприменима. Частота мини-мюдукции низка, поэтому используют мини-Mu фаги с селективным маркером. Например, в мини-Mu фаг Ми 1&4 был введен гены а, позволяющий отбирать мини-мюдуктанты по их устойчивости к ампициллину.
