- •1. Предмет, задачи и цели молекулярной биологии.
- •2. Химический состав нуклеиновых кислот.
- •3. Первичная структура нк
- •4.Открытие двойной спирали днк
- •5.Вторичная структура днк, правило э.Чаргаффа
- •6. Физико-химические свойства днк
- •7. Строение и свойства рнк
- •8. Матричные процессы синтеза биополимеров
- •9. Общая характеристика репликации
- •10. Белки и ферменты, участвующие в репликации днк
- •11. Инициация репликации, Ori-последовательность.
- •12. Терминация репликации
- •13. Репликация кольцевых молекул днк
- •14. Репликация теломерных концов днк
- •15. Явление обратной транскрипции
- •16. Репликативное метилирование днк
- •17. Репарация повреждений днк
- •Дезаминирование азотистых оснований.
- •Алкилирование.
- •18. Рекомбинация днк
- •19. Sos репарация
- •20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
- •21.Мини-транспозоны
- •22. Амплификация фрагментов днк с помощью полимеразной цепной реакции
- •23. Определение нуклеотидной последовательности молекул днк, метод секвенирования Максомома-Гилберта, метод Сэнгера, секвенаторы.
- •24. Общая схема процесса транскрипции и характеристика его отдельных элементов
- •25. Инициация, элонгация и терминация транскрипции, промотор и терминатор.
- •Вопрос 26. Транскрипция у прокариот, строение оперонов на примере lac-оперона.
- •Вопрос 27 транскрипция эукариот
- •29. Особенности организации генов у прокариот и эукариот
- •30. Строение м-рнк
- •31)Процессинг рнк
- •32. Сплайсинг общая характеристика и механизмы
- •33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост
- •34. Этапы расшифровки генетического кода
- •35)Эксперименты Ниренберга и Маттеи
- •36. Основные свойства генетического кода и кодового словаря
- •37. Общая схема процесса трансляции и характеристика его отдельных элементов.
- •У эукариот
- •Селекция инициаторной метионил-тРнк (Met-tRnAiMet)
- •Элонгация
- •Терминация
- •Компартментализация у эукариот
- •38. ТРнк: строение и свойства
- •39. ТРнк-синтетазы их фунуции и образование тРнк
- •Аминоацилирования
- •Механизм аминоацилирования
- •Безошибочность узнавания аминокислот[
- •Классификация
- •Доменная организация[
- •Технологические перспективы
- •40. Строение рибосом прокариот и эукариот
- •41. РРнк: строение и свойства
- •42. Этапы трансляции (инициация , элонгация, терминация) и их характеристика
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •43. Посттрансляционная модификация полипептидных цепей
- •44. Структура белков (первичная, вторичная, третичная и чевертичная)
- •1. Вторичная структура белков
- •2. Третичная структура белков
- •3. Конформационная лабильность белков
- •4. Денатурация белков
- •5. Факторы, вызывающие денатурацию белков
- •6. Медицинские аспекты конформационной
- •7. Применение денатурирующих агентов в биологических исследованиях и медицине
- •1. Супервторичная структура типа ?-бочонка
- •2. Структурный мотив "?-спираль-
- •3. Супервторичная структура в виде "цинкового пальца"
- •4. Супервторичная структура в виде "лейциновой застёжки-молнии"
- •1. Количество протомеров в структуре олигомерных белков
- •2. Сборка протомеров в олигомерный белок.
- •45. Фолдинг белков
- •46 Секреция белков у прокариот
- •47 Деградация белков
- •48 Передача информации через клеточную мембрану
- •49 Белковые домены, узнающие специфические последовательности днк
- •50 Сенсорные механизмы бактерий
- •51. Сенсорные механизмы эукариот
- •52. Проект «Геном человека» его этапы и значение
- •53. Геномика. Размеры, структура и особенности организации геномов различных групп организмов
19. Sos репарация
SOS-репарация используется, когда повреждений в ДНК становиться настолько много, что клетка может погибнуть. Степень индукции данного типа репарации пропорциональна количеству повреждений в ДНК. При небольшом числе повреждений увеличивается число репаративных белков, при большем числе повреждений приостанавливается деление клетки и индуцируется синтез еще большего числа репаративных белков. При еще большем числе повреждений в клетке синтезируются белки, которые способствуют ДНК-полимеразе осуществлять синтез дочерней цепи ДНК, используя в качестве матрицы дефектные звенья материнской цепи. В связи с этим в дочерней цепи ДНК появляется много ошибок. Благодаря SOS-репарации происходит удвоение ДНК и клетка может разделиться. Дочерние клетки выживут, если жизненно важные функции, закодированные в ДНК, сохраняться, если же нет – погибнут.
20. Мобильные генетические элементы и их типы про- и эукариот (транспозиция)
Мобильные генетические элементы (МГЭ) – особые последовательности ДНК, способные перемещаться внутри генома живых организмов. Они обнаружены практически во всех изученных организмах. В настоящее время известно несколько типов МГЭ. Различные
МГЭ отличаются друг от друга своей организацией и функциями, выполняемые в клетках.
Мобильные генетические элементы прокариот.
У прокариот выявлено несколько различных МГЭ: IS-элементы, транспозоны, плазмиды, а также некоторые бактериофаги.
IS-элементы (insertion sequences)
IS-элементы их еще называют инсерционные последовательности чаще состоят из 700 – 1500 пар нуклеотидов. На их концах располагаются инвертированные повторы, необходимые для перемещения, и содержащие обычно 10-40 пар нуклеотидов. В составе IS-элементов содержится один или несколько генов ответственных за их перемещение (транспозицию) по геному. Продуктом этих генов является транспозаза – белок, обеспечивающий перемещение IS-элемента. Транспозиция IS-элементов может происходить двумя способами. При транспозиции IS-элемента по первому способу происходит его удвоение, при этом одна из его копий остается на прежнем месте, а вторая встраивается в новый участок ДНК. Встраивание IS-элемента сопряжено также и с удвоением сайта-мишени, имеющего определенную длину (обычно 5 – 10 пар нуклеотидов) для каждого элемента. Обычно IS-элементы могут интегрировать в различные участки генома бактерий. В тоже время некоторые последовательности ДНК могут оказаться более предпочтительными, чем другие. При втором способе перемещения
происходит вырезание IS-элемента и последующее его встраивание в другой участок генома. IS-элементы при транспозиции могут попасть в регуляторную или кодирующую части гена и вследствие этого его инактивировать, или нарушить его нормальную регуляцию. IS-элементы могут влиять и на экспрессию генов расположенных с ними поблизости.
Транспозоны
Транспозоны (Tn-элементы) обладают теми же характеристиками, что и IS-элементы, но несут дополнительные гены, несвязанные с транспозицией. Такими генами могут быть:
а) гены устойчивости к антибиотикам, позволяющие бактериальной клетке выживать в присутствии соответствующих антибиотиков;
б) гены устойчивости к тяжелым металлам и другим ядам, позволяющие бактерии выживать при их наличии в среде обитания;
в) гены токсинов, снижающие жизнеспособность хозяев;
г) гены, позволяющие бактериям использовать нетрадиционные субстраты;
д) другие гены.
Транспозон может быть организован, так же, как и IS-элемент.
Но в отличие от IS-элементов транспозоны еще несут дополнительные гены, несвязанные с транспозицией. Как и IS-элементы транспозоны ограничены короткими прямыми повторами, возникшими в результате дупликации при его интеграции в геном.
Механизм перемещения Tn-элементов сходен с таковым IS-элементов. Встраивание транспозонов, как и IS-элементов, может происходить в различные районы генома. Однако они могут предпочитать определенные области хромосом для интеграции. Транспозоны способны передавать заключенные в них гены от одних бактерий другим, что может играть важную роль при адаптации бактерий к антибиотикам или продуцирования ими новых токсинов.
Плазмиды
В бактериальных клетках присутствуют внехромосомные факторы наследственности – плазмиды. Они способны переносить генетическую информацию от одной бактерии в другую. Существуют плазмиды, способные обратимо интегрировать в хромосому. Их называют – эписомы. Эписомы, обычно, содержат IS- или Tn-элементы, благодаря которым они могут включаться в состав хромосомы. Размер ДНК плазмид составляет 0,1 – 5 % размера хромосомы. Плазмиды в большинстве случаев кольцевые, ковалентнозамкнутые, суперсперализованные молекулы ДНК. Однако, существуют и линейные плазмиды, у таких плазмид концы защищены белками или соединены ковалентно. Плазмиды несут гены, необязательные для бактерий: гены устойчивости к антибиотикам; гены устойчивости к тяжелым металлам и другим ядам; гены токсинов; гены, позволяющие бактериям использовать нетрадиционные субстраты; другие гены.
Плазмиды для своей репликации используют клеточный репликативный аппарат. Каждая плазмида представляет собой репликон, репликация которого находится под контролем, поэтому каждая плазмида в клетке бактерии представлена определенным числом копий. Различают:
а) однокопийные плазмиды – представлены в клетке одной копией на клетку;
б) мультикопийные плазмиды, присутствуют в клетке обычно в 10 – 20 копиях;
в) плазмиды с ослабленным контролем репликации, они могут накапливаться в клетке до 1000 копий.
Плазмиды могут передаваться от одной бактерии к другой при конъюгации. В связи с этим различают трансмиссивные плазмиды. Эти плазмиды содержат tra-гены.
Плазмиды могут иметь широкий круг хозяев. Их называют космополитными плазмидами. Существуют плазмиды, способныет существовать в клетках грамположительных и грамотрицательных бактерий. Существуют плазмиды, способные существовать как в
прокариотических клетках, так и в клетках дрожжей.
Мобильные генетические элементы эукариот
МГЭ эукариот составляют около 10 – 30 % генома. Они рассеяны по геному, но иногда могут концентрироваться в определенных участках хромосомы. МГЭ перемещаются как внутри хромосомы, так и между ними. При этом транспозиции МГЭ происходят очень
редко, одно перемещение часто приходится на многие тысячи особей. МГЭ ответственны за ряд генетических явлений. У эукариот различают несколько классов МГЭ: транспозоны, ретропозоны, ретротранспозоны.
Транспозоны
Транспозоны эукариот сходны по организации с МГЭ прокариот. Они с флангов ограничены инвертированными повторами, необходимыми для их транспозиции. Наиболее хорошо изученные транспозоны эукариот – Р-элемент дрозофилы и Ас-элемент кукурузы Они представлены в геномах в 30 – 50 копиях, содержат ген транспозазы. Этот ген имеет прерывистое строение – состоит из экзонов и интронов. РНК, считанная с него, подвергается сплайсингу. Сплайсированная иРНК служит матрицей для синтеза транспозазы – белка, обеспечивающего перемещение элементов из одного участка генома в другой. При интеграции транспозонов в новый участок ДНК происходит дупликация сайта-мишени. Р-элемент при транспозиции обычно встраивается в определенный сайт с канонической последовательностью: ГГЦЦАГАС.
Ретротранспозоны с длинными концевыми повторами (ДКП)
Ретранспозоны с ДКП состоят из центральной части, называемой «тело», и имеющей размер 5000 – 8000 п.н. На их флангах располагаются прямые ДКН, состоящие обычно из 300 – 400 п.н. В составе ДКП содержатся участки, ответственные за инициацию транскрипции и полиаденилирование. Ограничивают ретротранспозон короткие прямые повторы, возникшие в результате дупликации сайта-мишени при его встраивании. Число копий ретротранспозонов, принадлежащих к одному семейству, в геноме варьирует от
нескольких до сотен тысяч.
Ретротранспозоны без ДКП
Данный тип МГЭ на флангах не содержит ДКП, в связи с этим они и получили свое название – ретротранспозоны без ДКП. В их перемещении участвуют ферменты обратная транскриптаза и интеграза. В связи с этим не трудно догадаться, что механизм перемещения ретротранспозонов без ДКП включает обратную транскрипцию. На начальном этапе транспозиции происходит транскрипция ретротранспозона. Образовавшаяся РНК служит матрицей для синтеза белков, участвующих в перемещении ретротранспозона без ДКП. В тоже время РНК-копия ретротранспозона, связываясь в
области разрыва ДНК с одной из ее цепей, выступает в качестве матрицы для синтеза комплементарной цепи ДНК при участии обратной транскриптазы. После завершения синтеза этой цепи ДНК РНК удаляется и достраивается вторая цепь ДНК.
Ретропозоны
Ретропозоны представляют собой интегрированные в геном ДНК-копии, синтезированные на различных РНК. Они ограничены короткими прямыми повторами. Существование ретропозонов свидетельствует о том, что возможен поток информации от РНК к ДНК.
Ретропозоны широко распространены среди эукариот. Они обнаружены в геномах млекопитающих, птиц, амфибий, насекомых. У млекопитающих ретропозоны составляют более 10 % от всей ДНК. Некоторые ретропозоны являются псевдогенами. Последние в
отличии от нормальных генов не экспрессируются с образованием функционально активного продукта.
